Category Archives: Brazil

A new study shows that even short-tubed flowers can specialise on hawkmoths as pollinators

Of all of the “classical” pollination syndromes, flowers that are hawkmoth pollinated have one of the highest levels of predictability. If a flower is pale in colour, opens at night, is highly scented, and possesses a long tube at the bottom of which is a supply of nectar, there’s a very high likelihood that it’s pollinated by long-tongued hawkmoths (Sphingidae).

Indeed, one of the foundational stories about the development of our understanding of how pollination systems evolve, relates to Charles Darwin, the long-tubed orchid Angraecum sesquipedale and the hawkmoth Xanthopan morganii praedicta.

Fast forward 160 years and we now know that pollination syndromes are more complex than 19th and early 20th century scientists imagined – see my recent book Pollinators & Pollination: Nature and Society for a discussion of this topic. That’s not surprising because, as I point out, we probably have data on the interactions between plants and their pollinators for only about 10% of the estimated 352,000 species of flowering plants. There’s still much to be discovered!

As an example of how our understanding of specialised flower-hawkmoth interactions is developing, consider this recent study that I’ve just published with my Brazilian colleague Felipe Amorim and other collaborators. In it we have shown that, contrary to expectations, a species of Apocynaceae (Schubertia grandiflora) with a relatively short floral tube can specialise on hawkmoths with much longer tongues than we might predict.

The full reference with a link to the study is shown below, followed by the abstract. If you would like a PDF, please drop me a line via my Contact page:

Amorim, F.W., Marin, S., Sanz-Viega, P.A., Ollerton, J. & Oliveira, P.E. (2022) Short flowers for long tongues: functional specialization in a nocturnal pollination network of an asclepiad in long-tongued hawkmoths. Biotropica https://doi.org/10.1111/btp.13090

Abstract:

Since Darwin, very long and narrow floral tubes have been known to represent the main floral morphological feature for specialized long-tongued hawkmoth pollination. However, specialization may be driven by other contrivances instead of floral tube morphology. Asclepiads are plants with a complex floral morphology where primary hawkmoth pollination had never been described. We detailed here the intricate pollination mechanism of the South American asclepiad Schubertia grandiflora, where functional specialization on long-tongued hawkmoth pollinators occurs despite the short floral tube of this species. We studied two plant populations in the Brazilian Cerrado and recorded floral visitors using different approaches, such as light-trapped hawkmoths for pollen analysis, direct field observations, and IR motion-activated cameras. Finally, using a community-level approach we applied an ecological network analysis to identify the realized pollinator niche of S. grandiflora among the available niches in the pollinator community. Throughout a period of 17 years, long-tongued hawkmoths were consistently recorded as the main floral visitors and the only effective pollinators of S. grandiflora. Flowers rely on highly modified corona and gynostegium, and enlarged nectar chambers, to drive visitors and pollination mechanism. Despite its relative short-tube, network analysis placed S. grandiflora in the module including exclusively long-tongued hawkmoth pollinators and the most phenotypically specialized sphingophilous plants in the community. These results represent the first example of functional specialization in long-tongued hawkmoths in an asclepiad species. However, this specialization is uncoupled from the long floral tubes historically associated with the sphingophily syndrome.

Heterospecific pollen deposition is positively associated with reproductive success in a diverse hummingbird-pollinated plant community: a new study just published

Plants which live in diverse communities with other species may often share pollinators, which means that their stigmas can receive the pollen from different types of plants as well from individuals of their own species. This “heterospecific” pollen deposition may have consequences for plant reproduction if it clogs up the stigmas and prevents “conspecific” pollen from gaining a foothold. However there’s still relatively little published on this phenomenon and its impact on reproduction, particularly in highly diverse tropical communities across different seasons. In a new study just published in the journal Oikos and led by Sabrina Aparecida Lopes, we have shown that in a Brazilian hummingbird-flower community heterospecific pollen deposition (HPD) shows seasonal patterns. Contrary to expectations, we also found a positive relationship between HPD and reproductive success, which by coincidence has also been shown this month for a high-Andean plant community in this paper just published by Sabrina Gavini and colleagues.

Here’s the full reference and the abstract for our Oikos paper:

Lopes, S.A, Bergamo, P.J, Queiroz, S.N.P., Ollerton, J., Santos, T. & Rech, A.R. (2021) Heterospecific pollen deposition is positively associated with reproductive success in a diverse hummingbird-pollinated plant community. Oikos (in press)

Heterospecific pollen deposition (HPD) is ubiquitous across plant communities, especially for generalized species which use a diversity of pollinators, and may have negative effects on plant reproduction. However, it is unclear whether temporal changes in the co-flowering community result in changes in HPD patterns. Moreover, community-level studies are required to understand which factors influence HPD and how the reproduction of different species is affected. We investigated the temporal variation of HPD, its relationship with level of specialization on pollinators and floral phenotypic specialization, and its association with reproductive success (pollen limitation and fruit set) in 31 hummingbird-pollinated plant species in a tropical Campo Rupestre. We found seasonality in HPD, with species flowering in the dry season having greater diversity of heterospecific pollen on stigmas and a higher frequency of stigmas containing heterospecific pollen, compared to the rainy season. Stigmas of ecologically generalized species had more heterospecific pollen, while the relationship for ecologically specialized species depended on floral phenotype. Surprisingly, and in contrast to theory, we found a positive relationship between HPD and reproductive success. Our results indicate benefits of generalization and facilitation, in which sharing pollinators brings greater reproductive success via increased conspecific pollen deposition, even if it incurs more HPD. We demonstrated how assessing HPD at a community-level can contribute to understanding the ecological causes and functional consequences of pollinator sharing.

If you’d like a PDF, please use the Contact page to request one.

Deforestation grabs the headlines: but what about the grasslands?

Perhaps it’s because we don’t have a fancy name for it? “Deforestation” rolls off the tongue in a rather satisfying way that emphasises the importance of conserving old growth and ancient woodlands. But how do we describe destruction of grasslands? “Degrasslandation” doesn’t really work, even though at its root is trying to describe the same effect: the loss of important, carbon-storing and biodiversity-preserving ecosystems. Grasslands, remember, are the world’s largest single terrestrial ecosystem.

Of course it’s not just grasslands that are disappearing: shrublands and savannahs such as the Brazilian cerrado are being lost even faster than forests are being cut down. But again “deshrublandisation” or “decerradoisation” just don’t have the same ring. Nor the political clout: Boris Johnson cannot wax lyrical about the “cathedrals of nature” of chalk grassland on Salisbury Plain or the species rich flood meadows along the Thames. However Britain has lost far more of them than we have of ancient woodlands: over 90% of such species diverse grasslands have now gone according to some estimates.

It’s clear that forests have great PR, are highly photogenic, and are ecologically incredibly important. So today’s announcement at COP26 that world leaders have committed to stopping deforestation by 2030 is welcome news: if they come through with their promises, which they didn’t following a similar announcement in 2014. But I’m in agreement with Gill Perkins who has just published this opinion piece in New Scientist. A commitment to stop grasslands, and other types of habitat, being built on, ploughed up or agriculturally “improved” could go a long way towards ensuring that carbon remains locked up in the world’s soils and vegetation. It doesn’t all have to be about the forests.

UPDATE: for more about the importance of grasslands and how they are being degraded worldwide, see this recent piece by Richard Bardgett, James Bullock, and colleagues entitled “Combatting global grassland degradation“.

Climate change history affects contemporary pollination systems – a new study just published

Illustration of Curatella americana and its pollinators by Pedro Lorenzo

The distribution of plants, animals and other organisms that we see around us is clearly influenced by climate: all species have limitations in terms of temperature, rainfall, etc., that affects where they can live and reproduce. As well as these contemporary “climatic niches” however, there are much more subtle effects of historical climate on species, and the ways in which they interact with one another. These are harder to study because it requires us to know about what climatic conditions were like in a particular region thousands or millions of years ago. But as our knowledge of paleoclimates grows, we can apply it to understand how contemporary ecology is shaped by the past. This in turn may tell us how species will react to future climate change.

In a new study that I’ve just published with Brazilian, Danish and American colleagues, we’ve shown that the frequency with which a South American savannah tree self-pollinates is determined mainly by the climatic stability experienced by a population since the Last Glacial Maximum. In contrast, and perhaps surprisingly, the current diversity and abundance of pollinators plays a much smaller role in how often plants self-pollinate.

The work was led by André Rodrigo Rech and formed part of his original PhD research. Here’s the full citation:

Rech, A.R., Ollerton, J., Dalsgaard, B., Jorge, L.R., Sandel, B., Svenning, J.-C., Baronio, G.J. & Sazima, M. (2021) Population-level plant pollination mode is influenced by Quaternary climate and pollinators. Biotropica (in press)

The abstract is below, first in English then in Portuguese. If anyone wants a PDF please add a comment or send me a message via my Contact page.

Abstract:

Patterns in ecology are the products of current factors interacting with history. Nevertheless, few studies have attempted to disentangle the contribution of historical and current factors, such as climate change and pollinator identity and behavior, on plant reproduction. Here, we attempted to separate the relative importance of current and historical processes on geographical patterns of the mating system of the tree species Curatella americana (Dilleniaceae). Specifically, we asked the following: (a) How do Quaternary and current climate affect plant mating system? (b) How does current pollinator abundance and diversity relate to plant mating system? (c) How does mating system relate to fruit/seed quantity and quality in C. americana? We recorded pollinators (richness, frequency, and body size) and performed pollination tests in ten populations of C. americana spread over 3,000 km in the Brazilian savannah. The frequency of self‐pollination in the absence of pollinators was strongly influenced by historical climatic instability and not by present‐day pollinators. In contrast, seed set from hand‐cross and natural pollination were affected by pollinators (especially large bees) and temperature, indicating the importance of current factors on out‐cross pollination. Two populations at the Southern edge of the species’ distribution showed high level of hand‐cross‐pollination and high flower visitation by large bees, but also a high level of autogamy resulting from recent colonization. Our results indicate that historical instability in climate has favored autogamy, most likely as a reproductive insurance strategy facilitating colonization and population maintenance over time, while pollinators are currently modulating the level of cross‐pollination.

Resumo:

Os padrões em ecologia são o produto de fatores contemporâneos interagindo a partir de uma bagagem histórica. Apesar desse reconhecimento, poucos estudos se ativeram em separar as contribuições dos fatores históricos e atuais como o clima, a identidade e comportamento de polinizadores sobre a reprodução de plantas. Neste trabalho nós decompomos a importância relativa dos processos contemporâneos e históricos no padrão geográfico do sistema reprodutivo da árvore comum no Cerrado, Curatella americana (Dilleniaceae). Especificamente nós perguntamos a) como o clima do presente e do quaternário afetam o sistema reprodutivo? b) Como a abundância e diversidade de polinizadores afeta o sistema reprodutivo da planta atualmente. c) Como o sistema reprodutivo se relaciona com a quantidade e qualidade dos frutos produzidos em C. americana? Para responder estas questões, nós registramos os polinizadores (riqueza, frequência e tamanho corporal) e realizamos testes de polinização em 10 populações de C. americana distribuídas em mais de 3.000 km de Cerrado no Brasil. A frutificação com autopolinização foi fortemente influenciada pela instabilidade climática do passado e não teve relação com os polinizadores no presente. Em contraste, a frutificação com polinização cruzada manual e natural foi afetada pelos polinizadores (especialmente abelhas grandes) e pela temperatura atual, revelando o papel de fatores ecológicos sobre a polinização cruzada. Duas populações na borda sul da distribuição de C. americana apresentaram alto nível de frutificação com polinização cruzada manual e altas taxas de visitação floral por abelhas grandes, mas também apresentaram alto nível de autogamia interpretadas como resultado da recente colonização dessas áreas. Nossos resultados indicam que a instabilidade climática do passado promoveu a autogamia como uma estratégia de segurança reprodutiva capaz de facilitar a colonização e manutenção de populações nesses locais com polinizadores imprevisíveis. Em contrapartida, nos locais com disponibilidade de polinizadores a polinização cruzada foi intensificada revelando a como processos históricos e contemporâneos atuam de forma sinérgica sobre o sistema reprodutivo das plantas.

The other pollinators: some recent videos that don’t focus on bees

The review of the biodiversity of pollinators that I published in 2017 estimated that on average about 18% of animal-pollinated plants within natural communities are specialised on bees. Bees also contribute to the reproduction of many of the plants that have generalist pollination systems, which account for perhaps 50% of plant species on average. But that stills leaves a significant fraction (maybe one third) that are specialised on the “other” pollinators, including flies, beetles, birds, bats, and so forth. There is growing awareness of how important these pollinators are for wild plant and crop pollination, but bees still hog most of the pollinator-related media.

In the last couple of weeks I’ve been sent links to videos that focus on these other pollinators so I thought I’d compile a list that show us something of the true diversity of animals that act as pollen vectors. Please add your own suggestions in the comments:

Elephant shrews, lizards, cockroaches*, crustaceans, and biting midges are covered in this SciShow video (HT Steve Hawkins)

Opossum pollination of a Brazilian plant is featured in this video (HT Felipe Amorim)

Here’s a recorded webinar on bird pollination by Dan Scheiman from Audubon Arkansas

A few videos on bat pollination by Jim Wolfe can be found here and here and here, and this is a short one that’s a supplement to a recent Journal of Applied Ecology paper on cactus pollination by Constance J. Tremlett et al.

The fascinating ecology of skunk cabbage (Symplocarpus foetidus), including fly and possibly beetle pollination, is the topic of this video.

Fly pollination is also highlighted in this short piece by the Natural History Museum, and this one deals with drone flies as managed pollinators for agriculture in New Zealand.

Enjoy!

*Watch out for my report on a newly discovered cockroach-pollinated plant….hopefully coming later this year…..

Recent reviews in pollination biology: an annotated list: UPDATED x 3

2019-02-09 13.47.49

As it’s my birthday today, I thought I’d reward myself by completing a blog post that I started just after Christmas and never got round to finishing.  Review articles that summarise recent developments in a field are an important contribution to the scientific literature that allow us to pause and reflect on where a topic has been and where it is headed.  Having recently (co)authored a couple of reviews I can attest that they are useful in this respect for both the writers and for the readers.

In the past couple of years quite a number of critical and timely reviews have been published which are proving very useful to me: I’m currently writing a book and these reviews have been invaluable in summarising aspects of a field that is currently publishing in excess of 1000 research papers per year. So I thought I’d bring them together into a single listing with a short commentary on each.  No doubt I have missed many other reviews so please feel free to point out any gaps and I will update the list as I go along.

Each review is hot linked to the source; a good proportion of the reviews are open access, notably those from the recent special issue of Annals of Botany devoted to the ecology and evolution of plant reproduction.  Some reviews are very focused, but most are quite broad.  Several of these complement one another.  I hope you find them interesting and useful.

Barrett, S. & Harder, L. (2017) The ecology of mating and its evolutionary consequences in seed plants. Annual Review of Ecology, Evolution and Systematics 48: 135-157

Mating systems, i.e. who breeds with whom, are just as complex in plants as they are in animals.  However some features of seed plants, such as the fact that they don’t move, that most species have both male and female functions, and that their growth is modular and often indeterminate, represent significant challenges that have been overcome in a bewildering variety of ways.

 

Braun, J. & Lortie, C.J. (2018)  Finding the bees knees: A conceptual framework and systematic review of the mechanisms of pollinator-mediated facilitation.  Perspectives in Plant Ecology, Evolution and Systematics 36: 33-40

In a community, if one plant species positively affects another, we term this “facilitation”.  It can occur at a variety of life stages, including reproduction whereby the presence of one species increase the likelihood of another species being pollinated.  This review shows that it occurs fairly frequently at a variety of spatial scales, but there are still significant gaps in our understanding of the phenomenon.

 

Fuster, F., Kaiser‐Bunbury, C., Olesen, J.M. & Traveset, A. (2018) Global patterns of the double mutualism phenomenon. Ecography https://doi.org/10.1111/ecog.04008

When species provide benefits to one another in two different ways, for example an animal is both a pollinator and a seed disperser of a plant species, we refer to it as a “double mutualism”.  As this fascinating review shows, double mutualisms are very uncommon, but they are widespread, and probably under-recorded.

 

Minnaar, C., Anderson, B., de Jager, M.L. & Karron, J.D. (2019) Plant–pollinator interactions along the pathway to paternity. Annals of Botany 123: 225-245 

The male aspect of plant reproduction, i.e. pollen donation, is often neglected when we consider how pollination systems evolve.  This review provides as up to date account of where we are in understanding how paternity influences floral characters such as shape and colour.

 

Ollerton, J. (2017) Pollinator diversity: distribution, ecological function, and conservation. Annual Review of Ecology, Evolution and Systematics 48: 353-376

A very broad over view of our current understanding of the biodiversity of pollinators, taking a deep time and a wide spatial perspective to put current concerns about loss of pollinators into a wider perspective.

 

Parachnowitsch, A.L., Manson, J.S. & Sletvold, N. (2019) Evolutionary ecology of nectar. Annals of Botany 123: 247–261 

We often take nectar for granted – it’s just sugar and water, isn’t it?  As this review shows, nectar is dynamic and complex, and affects a range of ecological functions beyond just providing pollinators with a reward.  However there’s still a huge amount we don’t understand about how nectar traits evolve.

 

Toledo-Hernández, M., Wangera, T.C. & Tscharntke, T. (2017) Neglected pollinators: Can enhanced pollination services improve cocoa yields? A review.  Agriculture, Ecosystems and Environment 247: 137-148

Chocolate is most people’s favourite confectionery and is famously pollinated only by small midges.  Or is it? As this review shows, lots of other insects visit cocoa flowers, but their role as pollinators has not been well studied.

 

Vizentin-Bugoni J, PKM Maruyama, CS Souza, J Ollerton, AR Rech, M Sazima. (2018) Plant-pollinator networks in the tropics: a review. pp 73-91 In Dáttilo W & V. Rico-Gray. Ecological networks in the Tropics. Springer.

This book chapter that I co-authored with some very energetic and creative young Brazilian researchers summarises what’s currently known about plant-pollinator interaction networks in tropical communities.  One of the conclusions is that they are really not so different to those in temperate and subtropical biomes.

 

Wright, G.A., Nicolson, S.W. & Shafir, S. (2018) Nutritional Physiology and Ecology of Honey Bees. Annual Review Entomology 63:327-344

A review of how bees use nectar and pollen at the level of both the individual and the colony, focused on the most widespread of pollinator species.

UPDATE 1:

As expected, several people have told me about reviews I’d missed, and in some cases ones that I had read but forgotten about!  I’ll list them below, though without annotations:

Bennett, J. et al. (2018) A review of European studies on pollination networks and pollen limitation, and a case study designed to fill in a gap, AoB Plants 10:  https://doi.org/10.1093/aobpla/ply068

Knight, T. et al. (2018) Reflections on, and visions for, the changing field of pollination ecology. Ecology Letters 21: 1282-1295

Vallejo-Marin, M. (2018) Buzz pollination: studying bee vibrations on flowers. New Phytologist https://doi.org/10.1111/nph.15666

 

UPDATE: 2

I had deliberately restricted the reviews to 2017 onwards, but via email David Inouye kindly sent a few older ones through which are equally useful:

Brosi, B. J. (2016) Pollinator specialization: from the individual to the community. New Phytologist: 210: 1190–1194

Hahn, M. and C. A. Brühl (2016) The secret pollinators: an overview of moth pollination with a focus on Europe and North America. Arthropod-Plant Interactions: 1-8

Inouye, D. W., et al. (2015) Flies and flowers III: Ecology of foraging and pollination. Journal of Pollination Ecology 16

 

UPDATE 3:

A more recent addition to this set of reviews was sent to me by Anne-Laure Jacquemart.  Although it’s focused just on one (rather variable) crop, I think it will be really useful for anyone interested in the pollination biology of crop plants:

Ouvrard, P. & Jacquemart, A.-L. (2019) Review of methods to investigate pollinator dependency in oilseed rape (Brassica napus).  Field Crops Research 231: 18-29

 

 

 

Pollinator availability, mating system and variation in flower morphology in a tropical savanna tree – a new, open-access study

Curatella image by Pedro Lorenzo

Widespread plant species can encounter a variety of different pollinators across their distributional range.  This in turn can result in local adaptation of flowers to particular pollinators, or to an absence of pollinators that results in adaptations for more self pollination.   A newly published study by one of my former PhD students, André Rodrigo Rech in Brazil, has looked at this in the widespread South American savanna tree Curatella americana.  André studied 10 populations separated in space by thousands of kilometres, in cerrado vegetation, one of the most threatened habitat types in Brazil.  Here’s the abstract:

Widely distributed organisms face different ecological scenarios throughout their range, which can potentially lead to micro-evolutionary differentiation at specific localities. Mating systems of animal pollinated plants are supposed to evolve in response to the availability of local pollinators, with consequent changes in flower morphology. We tested the relationship among pollination , mating system, and flower morphology over a large spatial scale in Brazilian savannas using the tree Curatella americana (Dilleniaceae). We compared fruit set with and without pollinators in the field, and analyzed pollen tube growth from self- and cross-pollinated flowers in different populations. Populations with higher natural fruit set also had lower fruit set in bagged flowers, suggesting stronger barriers to self-fertilization. Furthermore, higher levels of autogamy in field experiments were associated with more pollen tubes reaching ovules in self-pollinated flowers. Morphometric studies of floral and leaf traits indicate closer-set reproductive organs, larger stigmas and smaller anthers in populations with more autogamy. We show that the spatial variation in mating system, flower morphology and pollination previously described for herbs also applies to long-lived, perennial tropical trees, thus reemphasizing that mating systems are a population-based attribute that vary according to the ecological scenario where the plants occur

Here’s the full citation with a link to the paper which is open access:

Rech, A.R., Ré Jorge, L., Ollerton, J. & Sazima, M. (2018) Pollinator availability, mating system and variation in flower morphology in a tropical savannah tree. Acta Botanica Brasilica (in press)

The illustration of Curatella americana  and its pollinators is by Pedro Lorenzo.

This paper is a contribution to a special issue of Acta Botanica Brasilica dedicated to floral biology and pollination biology in Brazil It’s all open access and if you follow that link you can download the papers.

Local and regional specialization in plant–pollinator networks: a new study just published

Euphorbia canariensis pollinators 2016-04-29 17 58 00

A fundamental feature of the natural world is that no species exists in isolation: all organisms interact with other organisms during their lives. These interactions take many forms and the outcome varies with the type of interactions. For example predator-prey interactions are clearly negative for the prey species, but positive for the predator. Other interactions result in positive outcomes for both species, including relationships between pollinators such as bees, birds and flies, and the flowers that they pollinate. An important feature of such interactions is how specialized or generalized it is; that is, how many different pollinators are actually involved in pollinating a particular type of flower, or how many types of flower does a specific pollinator visits.

In a newly published study, I have collaborated with colleagues from Denmark and Brazil to assess how local specialization (within a community) relates to regional specialization (across communities) using two separate data sets from the Brazilian rupestrian grasslands and Canary Island/North African succulent scrub vegetation.

Here’s the citation with a link to the paper (drop me a line if you can’t access it and need a PDF):

Carstensen, D.W., Trøjelsgaard, K., Ollerton, J. and Morellato, L.P.C. (2017) Local and regional specialization in plant–pollinator networks. Oikos (in press) doi:10.1111/oik.04436

The abstract is as follows:

“Specialization of species is often studied in ecology but its quantification and meaning is disputed. More recently, ecological network analysis has been widely used as a tool to quantify specialization, but here its true meaning is also debated. However, irrespective of the tool used, the geographic scale at which specialization is measured remains central. Consequently, we use data sets of plant–pollinator networks from Brazil and the Canary Islands to explore specialization at local and regional scales. We ask how local specialization of a species is related to its regional specialization, and whether or not species tend to interact with a non-random set of partners in local communities. Local and regional specialization were strongly correlated around the 1:1 line, indicating that species conserve their specialization levels across spatial scales. Furthermore, most plants and pollinators also showed link conservatism repeatedly across local communities, and thus seem to be constrained in their fundamental niche. However, some species are more constrained than others, indicating true specialists. We argue that several geographically separated populations should be evaluated in order to provide a robust evaluation of species specialization.”

This is what those two different habitats look like:

If you would like more information on plant-pollinator networks, including details of an edible game for Christmas (!), follow this link to the standingoutinmyfield blog.

Generalist pollination can evolve from more specialised interactions: a new study just published

2013-11-24 15.44.01

There’s a long-standing idea in biology that ecological specialisation is an evolutionary “dead end” from which species can never emerge.  In other words, if a species becomes so adapted to a particular ecological strategy (could be feeding or habitat requirements or how it interacts with other species ) then no amount of natural selection will result in its descendants evolving different strategies, thereby diversifying into new species.  In particular it’s traditionally thought that evolving broader, “generalist” strategies from narrower, “specialised” ones is highly unlikely.

This has been much discussed in the literature on the ecology and evolution of pollination systems, where traditionally this “dead end” scenario has been accepted.  However a small number of case studies have shown that generalised pollination systems can evolve within much more specialised clades, beginning with Scott Armbruster and Bruce Baldwin’s study of Madagascan Dalechampia (Euphorbiaceae), published in Nature in 1998.

To this limited body of examples we can now add another case study: in the genus Miconia (Melastomataceae), generalist nectar/pollen rewarding strategies can evolve within a clade of plants that predominantly uses a more specialised, buzz-pollinated strategy involving just bees.

The work is part of the PhD research of Vinicius de Brito who is one of the researchers I was privileged to do some field work with in Brazil when I was there in 2013 – see my post: “It’s called rainforest for a reason, right?  Brazil Diary 6“.  Vini is the guy on the left of the photo accompanying this post.  Here’s the citation and a link:

de Brito, V.L.G., Rech, A.R., Ollerton, J., Sazima, M. (2017) Nectar production, reproductive success and the evolution of generalised pollination within a specialised pollen-rewarding plant family: a case study using Miconia theizans. Plant Systematics and Evolution doi:10.1007/s00606-017-1405-z 

Here’s the abstract:

Generalist plant–pollinator interactions are prevalent in nature. Here, we untangle the role of nectar production in the visitation and pollen release/deposition in Miconia theizans, a nectar-rewarding plant within the specialised pollen-rewarding plant family Melastomataceae. We described the visitation rate, nectar dynamics and pollen release from the poricidal anthers and deposition onto stigmas during flower anthesis. Afterwards, we used a linear mixed model selection approach to understand the relationship between pollen and nectar availability and insect visitation rate and the relationship between visitation rate and reproductive success. Miconia theizans was visited by 86 insect species, including buzzing and non-buzzing bees, wasps, flies, hoverflies, ants, beetles, hemipterans, cockroaches and butterflies. The nectar produced explained the visitation rate, and the pollen release from the anthers was best explained by the visitation rate of pollinivorous species. However, the visitation rates could not predict pollen deposition onto stigmas. Nectar production may explain the high insect diversity and led to an increase in reproductive success, even with unpredictable pollen deposition, indicating the adaptive value of a generalised pollination system.

As always, I’m happy to send a PDF to anyone who wants a copy, just drop me an email.

The road to degradation: is “naming all the species” achievable or even desirable?

structure4

In 2013 Mark Costello, Robert May and Nigel Stork published a review paper in the journal Science called “Can We Name Earth’s Species Before They Go Extinct?”  It’s a paper that I discuss with my students in their final year Biodiversity and Conservation module, and it always generates a lot of interest, and it’s has been well cited since it first appeared (143 citations* to date according to Web of Science).  There was an interesting response by Mora et al., with a riposte by Costello et al., but overall the original paper has been rather influential in framing some discussions about taxonomic effort and description of species, and the idea that we can “name everything” with additional resources.  At the end of the review Costello and colleagues answered their own question by stating: “We believe that with modestly increased effort in taxonomy and conservation, most species could be discovered and protected from extinction” [my emphasis].

Is their optimism justified?  Can “most species be discovered”?  And what are the implications for how we go about “discovering” these species that are unknown to science?

In my professional life I’ve been fortunate enough to carry out field work with some great colleagues in some wonderful parts of the world, including tropical rainforest and savannah in Guyana and Gabon, mountain scrub in the High Andes of Peru, seasonal dry forest in Australia, montane grasslands in South Africa, Namibian desert, and Brazilian cerrado and Atlantic rainforest.  All of these were sites where non-biologists would rarely venture: off the beaten track and (usually**) away from the typical tourist haunts.  It would be tempting to describe these places as “remote” but really they were not, because they all shared something in common: accessibility.  We were able to reach these sites by traveling along roads, of variable quality, usually in four-wheel drive vehicles.  The roads were often not in good condition, and frequently not metaled, but they were roads nonetheless.

It’s sometimes said that if one were to map the geographical coordinates of plant specimens stored in herbariums such as the one at Kew, you would end up with a road map of the world.  That’s because collecting biological specimens, or carrying out field work, requires us to be able to gain access to an area.  And accessibility usually means roads, unless one is working on the coast or along a river or lake, or have lots and lots of funding to allow teams to be helicoptered into an area (which is rare, but makes for exciting television).  Therefore most collecting of biological specimens is done in areas not far from roads.

So, any initiative that intends to “name all the species” in a particular group is going to require access to the remotest parts of the planet, areas that currently have no roads running through them.

There are still areas of the world that we can consider “remote” and “wilderness”, areas that are more than 100km from the nearest road – as a study published at the end of 2016 demonstrated.  But these are often found in the most biologically rich parts of the planet, for example tropical rainforest and mountainous areas, where we wouldn’t necessarily want to put roads to make them accessible to taxonomists (or even ecologists).  That’s because where roads go, people go, and accessibility to an area is usually followed by exploitation and degradation: illegal hunting, logging, mining, poaching of specimens for sale, etc. etc.

orchidmarket

Now, don’t get me wrong, taxonomy is absolutely vital to the conservation of the earth’s biodiversity.  It also underpins much ecological, bio-molecular and agricultural research and technology.  But the trade off for taxonomists is that they must gather their specimens and data from accessible areas, and that often means roads, and roads mean degradation.

The impetus for this post came from Twitter where a taxonomist highlighted the very good work done by the Virtual Institute of Spider Taxonomy Research (VINT) and described it as an “initiative to discover all spider species of the world in 30 years”.  Interestingly I can’t find that aspiration on the VINT website, but if it exists I’m not sure it’s achievable for spiders or any other diverse group of species, without being able to access parts of the world that are best left un-degraded.  Again, this is particularly true of the tropics where species can have very limited distributions.  A number of years ago an Australian botanist told me about how he was only able to collect some epiphytic Hoya specimens in Papua New Guinea by going into areas of rainforest that had been illegally logged, removing the plants from crowns of the felled trees, with no little risk to his own safety if the loggers had spotted him.  Some of those species might have remained undescribed if the area had not been opened up by a road prior to deforestation.  That would have been a loss for Hoya taxonomy, but surely positive for conservation.

Can “most species be discovered”?  Is this even a desirable thing?  I used to think so, because of the oft-stated view that we can’t conserve what we don’t know.  Now I’m not so sure, for reasons I hope I’ve articulated.  But as always I’d welcome your comments and criticisms.

 

*Including one in the conference: Annual Forum on Grumpy Scientists: the Ecological Conscience of a Nation:Royal Zoological Society, Sydney, Australia.  I’d have liked to have been a fly on the wall at that meeting!

**Usually, but not always: I have a few papers where some or all data collection was done in and around back-packers hostels, hotels, and tourist lodges.  Hey, you take your opportunities where you find them in this game!