Category Archives: Flies

A milkweed on the shore: tracking down an elusive Danish plant

Since arriving in Odsherred towards the end of August I’ve been looking out for one plant in particular on our bicycle rides and hikes around the region. Vincetoxicum hirundinaria is a widespread asclepiad or milkweed: a member of the family Apocynaceae, subfamily Asclepiadoideae. This is a group of plants on which I’ve published quite a few research papers and which feature heavily in my book Pollinators & Pollination: Nature and Society.

So far the species has proven elusive and a few Danish ecologists that I’d spoken with told me they had never seen it in the wild. The GBIF account of the species shows a few populations in this part of Denmark but I wasn’t sure if they were old records of populations that no longer exist. But as of yesterday I can confirm that at least one of those populations is extant!

We had cycled out to the small town of Klint about 13km west of us, to see the glacial moraine landscape for which the area is famous and which gives Odsherred UNESCO Geopark status. As we approached the small fishing harbour at Klint I let out an excited shout to Karin who was just ahead of me: in amongst the roadside vegetation I’d spotted the distinctive and immediately recognisable yellow of Vincetoxicum hirundinaria in its autumnal hues! In the photos that follow you can see how well that yellow stands out against the colours of the other plants in the community.

At this time of the year the plant has ceased flowering, but the occasional swollen green seed pod was evidence of successful pollination of their morphologically complex flowers.

I was surprised at just how close to the sea the plants were growing; they must get inundated by sea water during stormy tidal surges.

So what is pollinating these flowers on this exposed shoreline? That’s a question that I want to pursue in the coming years. The Pollinators of Apocynaceae Database has remarkably few records of pollinators in this species, given how widespread it is. Flies certainly pollinate it, but there’s also records of wasps and bees as visitors, including bumblebees on flowers of a plant that I had in cultivation in Northampton. There’s a couple of other research groups in Scandinavia and Europe who are looking at the pollination ecology of the species and I’m hoping that we can collaborate on a study of spatial variation in its reproduction. Vincetoxicum is quite a large genus (around 150 species) and only around 10% of the species have been studied in any detail. But these studies are revealing a complex diversity of pollinators, including most recently, cockroaches in the Chinese species Vincetoxicum hainanense. I’m sure this intriguing group of plants has more fascinating stories to tell us about the ecology and evolution of its pollination systems.

FIGURE 4 from Xiong et al. (2020) Specialized cockroach pollination in the rare and
endangered plant Vincetoxicum hainanense in China. American Journal of Botany 107:
1355–1365.

The largest West African flower: Pararistolochia goldieana!

Some years ago, browsing in a second hand bookshop, I happened across a copy of an old magazine from 1950 called Nigeria. Published by the then colonial government, it was a miscellaneous collection of articles about the culture, geography and natural history of that fascinating West African country. Although aspects of the contents are problematical by modern standards, I bought it because of a short article about a wild plant with enormous flowers and a remarkable pollination strategy. In particular, the spectacular photograph of a man holding a flower that’s the length of his forearm grabbed my attention: who couldn’t love a flower like that?!

The plant is Pararistolochia goldieana, a vine found in the forests of this region, as described in the introductory text:

These types of flowers are pollinated by flies, a common strategy in the Birthwort family (Aristolochiaceae) to which the plant belongs. This strategy of fly pollination in which flies are deceived into visiting the flowers by their stink and colour, and temporarily trapped in the enclosed chamber, is something that I explore in detail in my book Pollinators & Pollination: Nature and Society, particularly in the genus Ceropegia. Those plants show convergent evolution with the pollination systems of Aristolochiaceae, though they are unrelated.

Pararistolochia goldieana has a wide distribution across West Africa, including Cameroon, Equatorial Guinea, Nigeria, and Sierra Leone. The IUCN Red List categorises it as ‘Vulnerable’ due to habitat loss. The population where these photographs were taken is described on the final page of the article:

The city of Ibadan is one of the largest in Nigeria and has grown enormously, ‘from 40 km2 in the 1950s to 250 km2 in the 1990s‘. I wonder if this forest, and its botanical treasures, still exists?

During field work in Gabon in the 1990s I was fortunate enough to encounter a species of Pararistolochia in the rainforest of Lopé National Park. It was a different species to P. goldieana, with rather smaller but no less spectacular flowers, and it stank to high heaven! We knew it was there long before we saw it. I collected some flies from the flowers and had them identified, though I’ve never published the data: it’s available if anyone is working on a review of pollination in the family.

This 1950 article is anonymous, so I don’t know who to acknowledge for the amazing images. However the botanist R.W.J. Keay was working on a revision of the family for the Flora of West Tropical Africa project at the time, so it may have been written by him.

Global effects of land-use intensity on pollinator biodiversity: a new study just published

Humans affect the land on which they live in many different ways, and this in turn influences local biodiversity. Sometimes this has positive effects on local wildlife: consider the diversity of birds to be found in well-managed suburban gardens, for example. But often the effect is negative, especially when the land is intensively managed or habitats are destroyed, for example via deforestation or urban development.

This is not a new phenomenon – according to a recent study, most of the habitable parts of the planet have been shaped by humans for at least 12,000 years (see Ellis et al. 2021). What is new, however, is the scale and the speed with which land-use is changing, which are far greater than they have been historically. An important question is the extent to which this change in land-use intensity is affecting pollinator diversity in different parts of the world. Over the past 18 months I’ve been collaborating on a project led by Joe Millard (as part of his PhD) and Tim Newbold which uses the Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (PREDICTS) database to address that very question.

A paper from that collaboration is published today in the journal Nature Communications; it’s open access and can be downloaded by following this link.

The study was global in scale and used data from 12,170 sites to assess the affect of land-use intensity on 4502 pollinating species. The findings are really fascinating; highlights include:

  • In comparison to natural vegetation, low levels of land-use intensity can have a positive effect on the diversity of pollinators.
  • For most land categories, greater intensity of land-use results in significant reductions in diversity and abundance of pollinators, however. For example, for urban sites there’s a 43% drop in number of species and a drop in 62% pollinator abundance from the least to the most intensive urban sites.
  • On cropland, strong negative responses of pollinators to increasing intensity are only found in tropical areas, although different taxonomic groups vary in their responses.
  • The latter finding is especially concerning given that: (i) most pollinator diversity is found in the tropics; (ii) the majority of tropical crops are insect pollinated; and (3) tropical agriculture is becoming increasingly intensive and land use is likely to rapidly change in the coming decades.

The full reference for the study, with all authors, is:

Millard, J., Outhwaite, C.L., Kinnersley, R., Freeman, R., Gregory, R.D., Adedoja, O., Gavini, S., Kioko, E., Kuhlmann, M., Ollerton, J., Ren, Z.-X. & Newbold, T. (2021) Global effects of land-use intensity on local pollinator biodiversity. Nature Communications 12, 2902. https://doi.org/10.1038/s41467-021-23228-3

Flowers can be assholes – quite literally!

2003-572 s G Bochum

WARNING: There’s a high yuck factor to this post, it’s not for the squeamish or easily offended!

One of my Twitter contacts, Traci Birge in Finland, has been reading Pollinators & Pollination: Nature and Society, and making some very nice comments about it. I had to laugh at this one in which she describes some plants as “assholes” because of the way in which they deceive pollinators into visiting their flowers but offer no reward in return:

If you follow that thread you can see that Traci was closer to the truth than perhaps she realised: there are some plants with flowers that appear to mimic the anuses of dead mammals, particularly in the families Apocynaceae and Araceae. By their smell, texture, colour and hairiness they are fooling flies into visiting the flowers, because assholes, like any mammalian orifice, provide an entry point for maggots of carrion-feeding flies. Sometimes the deception is so great that the flies lay their eggs on these blooms, though of course the maggots starve.

A great example of an anus-mimicking bloom is the Dead Horse Arum (Helicodiceros muscivorus). Check out the image above: if that doesn’t look like a horse’s ass, I don’t know what does!

Other examples might be found within the stapeliads, especially the genus Huernia which often have a thickened annulus to the centre of the flower. However that could also be interpreted as mimicking an open, inflamed wound on the side of an animal:

As I point out in the book, you might imagine that there would be strong natural selection against flies visiting these flowers if they lose fitness by laying eggs on such an unsuitable substrate. But the flowers are tapping into really deep-seated behaviours and clearly the flies can’t distinguish the flowers from the real thing.

This is flower pollination that is far removed from the deliciously perfumed, cute-and-cuddly, heart-warming world of bees and flowers. Isn’t nature wonderful?

All photos from Wikipedia, as follows:

Helicodiceros muscivorus: Göteborgs botaniska trädgård (photographer: Ingemar Johansson) – http://www.mynewsdesk.com/se/pressroom/goteborgs_botaniska_tradgard/image/view/dracunculus-muscivorus-128973, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=19265330

Huernia zebrina: Enzo^ – Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=10963668

Huernia schneideriana: Juan Carlos Fonseca Mata – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=94705877

Pollinators and pollination in the UK: an introductory workshop – 26th August

Jeff WT workshop 2020

The Wildlife Trust for Bedfordshire, Cambridgeshire and Northamptonshire has invited me to run my Introduction to Pollinators and Pollination workshop again this year, but of course it will all be online.  Details for signing up are on the images, or you can follow this link. 

Here’s a description of the workshop:

Pollination of flowers ensures the reproduction of most British wild plants and many of our agricultural crops. This session will provide an introduction to the natural history of pollinators and how they interact with the flowers that they pollinate. The main groups of pollinators will be introduced, with guidance on how to identify them, and their ecology and behaviour will be explored. The session will also consider why conserving these species is so important, followed by a Q and A discussion showing what individuals can do to help ensure their future diversity and abundance.

Get a 30% discount if you pre-order my new book Pollinators & Pollination: Nature and Society

PollinatorsandPollination-frontcover

In the next few months my new book Pollinators & Pollination: Nature and Society will be published.  As you can imagine, I’m very excited! The book is currently available to pre-order: you can find full details here at the Pelagic Publishing website.  If you do pre-order it you can claim a 30% discount by using the pre-publication offer code POLLINATOR.

As with my blog, the book is aimed at a very broad audience including the interested public, gardeners, conservationists, and scientists working in the various sub-fields of pollinator and pollination research. The chapter titles are as follows:

Preface and Acknowledgements
1. The importance of pollinators and pollination
2. More than just bees: the diversity of pollinators
3. To be a flower
4. Fidelity and promiscuity in Darwin’s entangled bank
5. The evolution of pollination strategies
6. A matter of time: from daily cycles to climate change
7. Agricultural perspectives
8. Urban environments
9. The significance of gardens
10. Shifting fates of pollinators
11. New bees on the block
12. Managing, restoring and connecting habitats
13. The politics of pollination
14. Studying pollinators and pollination
References
Index

 

 

Garden plant-pollinator surveys: progress so far

The network of pollination ecologists and insect specialists who have confirmed that they are surveying plant-pollinator networks in their gardens now stands at 50. As the map above shows, most are in the UK, Ireland and mainland Europe, but the Americas are also becoming well represented, we have a couple of people surveying in North Africa, and three in Australia. An x-y plot of the coordinates of the gardens shows the spread a little better:

Some people have started to send me data already, which is great; if you’re surveying and haven’t let me know your latitude and longitude, please do so, preferably decimalised – you can convert degrees/minutes/seconds to decimal here: https://www.latlong.net/degrees-minutes-seconds-to-decimal-degrees

I’ve managed 13 formal 15 minute surveys so far, plus have a few ad hoc observations that I am keeping separate, and I will be continuing my data collection for the foreseeable future. I’ve started playing with the data as you can see below. This is a plot made using the bipartite package in R, with plants to the left and pollinators to the right. The size of the bars is proportional to the number of pollinators/plants a taxon connects to. In the plants you can immediately see the dominance of apple (Malus domestica) and greengage (Prunus domestica), which attract a wide variety of insects to their flowers. Of the pollinators, the hairy-footed flower bee (Anthophora plumipes) and dark-edged beefly (Bombylius major) are especially common and generalist in their flower visits. It will be really interesting to see how this changes over the season, and how our fruit and vegetables are connected into the wider network via pollinators that they share with the ornamental and native plants.

If you are experienced at surveying pollinators and want to get involved, follow that first link and check out the protocol and FAQs, and please do email me: jeff.ollerton [at] northampton.ac.uk

The other pollinators: some recent videos that don’t focus on bees

The review of the biodiversity of pollinators that I published in 2017 estimated that on average about 18% of animal-pollinated plants within natural communities are specialised on bees. Bees also contribute to the reproduction of many of the plants that have generalist pollination systems, which account for perhaps 50% of plant species on average. But that stills leaves a significant fraction (maybe one third) that are specialised on the “other” pollinators, including flies, beetles, birds, bats, and so forth. There is growing awareness of how important these pollinators are for wild plant and crop pollination, but bees still hog most of the pollinator-related media.

In the last couple of weeks I’ve been sent links to videos that focus on these other pollinators so I thought I’d compile a list that show us something of the true diversity of animals that act as pollen vectors. Please add your own suggestions in the comments:

Elephant shrews, lizards, cockroaches*, crustaceans, and biting midges are covered in this SciShow video (HT Steve Hawkins)

Opossum pollination of a Brazilian plant is featured in this video (HT Felipe Amorim)

Here’s a recorded webinar on bird pollination by Dan Scheiman from Audubon Arkansas

A few videos on bat pollination by Jim Wolfe can be found here and here and here, and this is a short one that’s a supplement to a recent Journal of Applied Ecology paper on cactus pollination by Constance J. Tremlett et al.

The fascinating ecology of skunk cabbage (Symplocarpus foetidus), including fly and possibly beetle pollination, is the topic of this video.

Fly pollination is also highlighted in this short piece by the Natural History Museum, and this one deals with drone flies as managed pollinators for agriculture in New Zealand.

Enjoy!

*Watch out for my report on a newly discovered cockroach-pollinated plant….hopefully coming later this year…..