Category Archives: Evolution

Flowers can be assholes – quite literally!

2003-572 s G Bochum

WARNING: There’s a high yuck factor to this post, it’s not for the squeamish or easily offended!

One of my Twitter contacts, Traci Birge in Finland, has been reading Pollinators & Pollination: Nature and Society, and making some very nice comments about it. I had to laugh at this one in which she describes some plants as “assholes” because of the way in which they deceive pollinators into visiting their flowers but offer no reward in return:

If you follow that thread you can see that Traci was closer to the truth than perhaps she realised: there are some plants with flowers that appear to mimic the anuses of dead mammals, particularly in the families Apocynaceae and Araceae. By their smell, texture, colour and hairiness they are fooling flies into visiting the flowers, because assholes, like any mammalian orifice, provide an entry point for maggots of carrion-feeding flies. Sometimes the deception is so great that the flies lay their eggs on these blooms, though of course the maggots starve.

A great example of an anus-mimicking bloom is the Dead Horse Arum (Helicodiceros muscivorus). Check out the image above: if that doesn’t look like a horse’s ass, I don’t know what does!

Other examples might be found within the stapeliads, especially the genus Huernia which often have a thickened annulus to the centre of the flower. However that could also be interpreted as mimicking an open, inflamed wound on the side of an animal:

As I point out in the book, you might imagine that there would be strong natural selection against flies visiting these flowers if they lose fitness by laying eggs on such an unsuitable substrate. But the flowers are tapping into really deep-seated behaviours and clearly the flies can’t distinguish the flowers from the real thing.

This is flower pollination that is far removed from the deliciously perfumed, cute-and-cuddly, heart-warming world of bees and flowers. Isn’t nature wonderful?

All photos from Wikipedia, as follows:

Helicodiceros muscivorus: Göteborgs botaniska trädgård (photographer: Ingemar Johansson) Рhttp://www.mynewsdesk.com/se/pressroom/goteborgs_botaniska_tradgard/image/view/dracunculus-muscivorus-128973, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=19265330

Huernia zebrina: Enzo^ – Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=10963668

Huernia schneideriana: Juan Carlos Fonseca Mata – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=94705877

Finally, a physical copy of my book!

Yesterday I was delighted to finally receive an advance copy of my book Pollinators & Pollination: Nature and Society! It’s been over three years in the writing and production, much longer than I had anticipated. But, as I describe in its pages, the book is the culmination of >50 years of experience, study and research. So perhaps three years isn’t so bad…

If you’re interested in buying a copy you can order it direct from Pelagic Publishing and from most of the large online booksellers. Let me know what you think.

Why are bees like Bactrian camels? Because they both have two humps!

It was eminent bee biologist Charles Michener who first* pointed out that there was something odd about the global distribution of bees. In his 1979 paper Biogeography of the bees he writes:

“unlike many groups which abound in the tropics, bees attain their greatest abundance in warm temperate areas”

Think about that for a moment: in contrast to most other groups of insects, birds, mammals, flowering plants, fish, indeed the majority of the Earth’s biodiversity, bees are NOT generally at their most species rich in tropical areas. Rather, we have to move north and south of the equator to find them at their highest diversity. This is an odd pattern of distribution for such a successful (> 20,000 species), globally widespread and ecologically important group of organisms.

Some 15 years ago I was inspired by Michener’s comments when, together with colleagues Steve Johnson and Andrew Hingston, we wrote a chapter called Geographical variation in diversity and specificity of pollination systems for the 2006 Waser & Ollerton edited volume Plant-pollinator Interactions: from Specialization to Generalization. In that chapter we presented a rough analysis of how bee diversity per unit area in different countries changes with latitude. This, and a follow-up that appeared in my 2017 Annual Review of Ecology, Evolution and Systematics paper, confirmed Michener’s view that there’s an unusual relationship between bee diversity and latitude, with peak species richness outside of the tropics, in warm, dry environments.

What I really hoped over this time was that some serious bee biologists would follow up Michener’s insights and produce a full analysis of how bee diversity changes across the planet. Yesterday that hope was realised when Michael Orr, Alice Hughes, Douglas Chesters, John Pickering, Chao-Dong Zhu and John Ascher published the first analysis of bee diversity across the whole planet, and its underlying causes, in their open-access paper Global Patterns and Drivers of Bee Distribution.

Their analyses are based on a data set of >5,800,000 records of where bees occur and it’s been an incredible achievement to bring all of that together into a planet-wide view of where bees are found, and why. I highly recommend that you download and read it, it’s an impressive piece of work.

What have camels got to do with all of this? Well, as the authors show in their paper (from which the image above is taken), if you graph up the increase in bee species richness with latitude from the poles in each hemisphere, you get two humps at about 35 degrees north and south of the equator: like a Bactrian camel. In contrast, as I noted above, if you were to do the same for for most other species you’d get a single hump at the equator: like a dromedary camel.

One of the key drivers of this bimodal pattern seems to be the amount of rainfall in an environment – bees do not like it too wet, in contrast to their relatives the ants which do show the more typical tropical peak in diversity. As the authors put it:

“humidity may play a key role in limiting bee distribution, such as through spoilage of pollen resources”

One of the implications of this for the biogeography of plant-pollinator interactions is that we might expect there to be a greater diversity of different types of pollinators in areas where bees are not so abundant. And indeed that is exactly what we find: in that Ollerton, Johnson and Hingston book chapter I mentioned we showed that there’s a step-change in the diversity of functionally specialised pollination systems as one moves from the sub-tropics into the tropics. There could be many reason for that but I suspect that one is a relative lack of bees compared to the number of plants species; thus you get tropical “oddities” such as specialised cockroach pollination in some plants.

Orr et al.’s paper is a milestone in bee biogeography and opens up new opportunities for conserving these insects, and their vital relationships with the flowering plants. To give just one example: these analyses provide a framework for predicting bee diversity hotspots in parts of the world that have been poorly explored by bee taxonomists, but which are nevertheless severely threatened by habitat degradation and conversion to agriculture. It could also be used for predicting how climate change might affect future bee distributions, especially in parts of the world that are expected to become wetter. I’m looking forward to seeing how the team’s work develops in the future.

——————————————–

*It’s always risky to state “first”, but Michener was certainly the first that I am aware of. Let me know if you’ve come across any precedents.

Recent pollinator and pollination related research that’s caught my eye

2020-07-30 16.25.26

As I near completion of the copy-editing phase of my forthcoming book it’s frustrating to see all of the great research that’s been produced in recent weeks that I probably won’t be able to cite!¬† Here’s a few things that caught my eye:

Damon Hall and Dino Martins have a short piece on Human dimensions of insect pollinator conservation in Current Opinion in Insect Science.¬† My favourite line is: “any call to ‚Äėsave the bees‚Äô must be a call to stabilize agriculture”.¬† Amen to that.

In the journal New Phytologist, Rhiannon Dalrymple and colleagues, including Angela Moles who hosted me during my recent stay in Australia, have a great study entitled Macroecological patterns in Ô¨āower colour are shaped by both biotic and abiotic factors.¬† The title pretty much sums it up: in order to fully understand how flowers evolve we need to consider more than just their interactions with pollinators.¬† It’s another demonstration of how we must look beyond simplistic ideas about pollination syndromes to fully understand the complexities of the relationship between flowering plants and pollinators…..

…..talking of which, again in New Phytologist, Agnes Dellinger asks: Pollination syndromes in the 21st century: where do we stand and where may we go?¬† It’s an insightful and far-reaching review of a topic that has intrigued me for more than 25 years.¬† There are still a lot of questions that need to be asked about a conceptual framework that, up until the 1990s, most people in ecology and biology accepted rather uncritically.¬† One of the main unanswered questions for me is how further study of largely unexplored floras will reveal the existence of new pollination systems/syndromes.¬† Which leads nicely to….

…..an amazing paper in Nature this week by Rodrigo C√°mara-Leret et al. showing that New Guinea has the world‚Äôs richest island flora.¬† The described flora includes 13,634 plant species, 68% of which are endemic to New Guinea!¬† And the description of new species each year is not leveling off, there’s still more to be discovered.¬† A commentary on the paper by Vojtech Novotny and Kenneth Molem sets some wider context to the work, and quite a number of media outlets have covered the story.¬† Why is this relevant to pollinators and pollination?¬† Well, we actually know very little about this critical aspect of the ecology of the island: there’s only a handful of published studies of plant-pollinator interactions from New Guinea, mostly focused on figs, bird-flower interactions, and a couple of crops.¬† For such a biodiverse part of the world that’s a big gap in our understanding.

Finally, James Reilly, Rachael Winfree and colleagues have a paper in Proceedings of the Royal Society series B showing that: Crop production in the USA is frequently limited by a lack of pollinators.  Most significant findings to me were that of the seven crops studied, five of them have their yields limited by lack of pollinators, and that even in areas of highly intensive farming, wild bees provided as much pollination service as honeybees.

That’s a few of the things that I spotted this week; what have you seen that’s excited or intrigued you?¬† Feel free to comment.

 

Get a 30% discount if you pre-order my new book Pollinators & Pollination: Nature and Society

PollinatorsandPollination-frontcover

In the next few months my new book Pollinators & Pollination: Nature and Society will be published.¬† As you can imagine, I’m very excited! The book is currently available to pre-order: you can find full details here at the Pelagic Publishing website.¬† If you do pre-order it you can claim a 30% discount by using the pre-publication offer code POLLINATOR.

As with my blog, the book is aimed at a very broad audience including the interested public, gardeners, conservationists, and scientists working in the various sub-fields of pollinator and pollination research. The chapter titles are as follows:

Preface and Acknowledgements
1. The importance of pollinators and pollination
2. More than just bees: the diversity of pollinators
3. To be a flower
4. Fidelity and promiscuity in Darwin’s entangled bank
5. The evolution of pollination strategies
6. A matter of time: from daily cycles to climate change
7. Agricultural perspectives
8. Urban environments
9. The significance of gardens
10. Shifting fates of pollinators
11. New bees on the block
12. Managing, restoring and connecting habitats
13. The politics of pollination
14. Studying pollinators and pollination
References
Index

 

 

The evolution of insect pollination: a new essay just published

Science MagazineIn the latest issue of the journal Science you’ll find a commentary essay entitled: “The origins of flowering plants and pollinators“, written by Casper van der Kooi and myself.¬† It’s open access so do go and read it.

This commentary brings together some¬† recent findings in palaeontology, molecular phylogenetics, and pollinator sensory physiology and behaviour, to discuss the progress that’s been made in understanding the deep-time evolution of this most familiar and charismatic of ecological interactions.

The short version is that the old conceptual models are absolutely wrong.¬† Some version of “first came the gymnosperms and they were primitive and unsuccessful because they were wind pollinated.¬† Then, at the start of the Cretaceous, the angiosperms evolved and they were insect pollinated and advanced and so more successful” continues to appear in text books.¬† But we’ve known for a long time that many of the Jurassic gymnosperms were insect pollinated.¬† This may (or may not) predate insect pollination of angiosperms: there are huge disagreements between palaeobotanists and molecular phylogeneticists about when the first flowering plants evolved.¬† The graphic above comes from our essay and shows just how big the discrepancy is: molecular models suggest an origin for the angiosperms about 70 million years prior to the first confirmed fossils.¬† That’s about equivalent to the whole of the Jurassic period!¬† There are similar disagreements when it comes to the evolution of pollinating insects: for the Lepidoptera (butterflies and moths) the difference between the earlier molecular and later fossil evidence may be as much as 100 million years.

As we discuss, there are huge implications in these discrepancies for understanding not just how major elements within the Earth’s biodiversity evolved, but also for the origins of pollinator sensory physiology.¬† Insect behaviours linked to colour vision and odour reception may in turn influence effective crop and wild plant pollination.

The image accompanying our essay is by the very talented biologist, science communicator and graphic designer Elzemiek Zinkstok Рfollow that link and check out her work.

 

Monarchs and Milkweeds Workshop summary, Oak Spring, Virginia, June 2019

2019-06-12 09.24.58

As I recounted in my last post about a train ride through American climate change, my wife Karin and I have been in the USA for the past couple of weeks, visiting colleagues in the west and ultimately heading eastwards to Virginia for a workshop on monarch butterflies and their milkweed hosts.  The meeting was organised by Anurag Agrawal, professor at Cornell University and author of the recent book Monarchs and Milkweed, highly recommended to anyone interested in the natural history of plants and insects.  The monarch (Danaus plexippus) is an iconic migrating  species that travels from Mexico to Canada and back, over the course of a few generations.  This behaviour, and their vast over-wintering assemblages, have become the focus of intense efforts to understand their ecology and biology.  Their caterpillar host plants are mainly milkweeds (Asclepias spp.) and bringing together both plant and animal scientists is important for gaining a fuller over view of the issues facing the monarchs and the milkweeds, and how both can be conserved in a time of anthropogenic change.

The venue for the workshop was Oak Spring, Upperville, the former home of Paul and Rachel (“Bunny”) Mellon which has been turned into the base of operations for a philanthropic foundation specialising in plant science, horticulture, and botanical art.¬† The¬†Oak Spring Garden Foundation¬†(OSGF) is “dedicated to inspiring and facilitating scholarship and public dialogue on the history and future of plants, including the culture of gardens and landscapes and the importance of plants for human well-being”.¬† The OSGF generously funded the workshop, including accommodation and travel for participants.¬† This brought together a small group of scientists from the USA, the UK and Brazil, together with an artist, a milkweed horticulturalist, and two science writers.¬† Their brief was to discuss the latest developments in our understanding of monarch butterflies,¬†their decline and conservation, and the taxonomy, evolution and ecology of milkweeds and¬†the wider groups of Lepidoptera and the plant family Apocynaceae to which these organisms belong.¬† My invitation to take part was due to the research on the pollination ecology of this family I’ve conducted, spanning about twenty five years and culminating in a recently published assessment of the diversity of pollination systems in Apocynaceae.

First things first: Oak Spring is one of the most tranquil, beautiful, and inspiring places where it’s ever been my privilege to stay.¬† Here’s a few photographs, but they really do not do justice to the buildings and garden, their setting, nor to the unique atmosphere of Oak Spring.

2019-06-12 15.27.50

2019-06-11 10.51.48

2019-06-11 14.26.45

2019-06-10 20.21.54

2019-06-12 15.24.31

 

2019-06-12 13.28.57

2019-06-11 16.26.56

So to the science.  The workshop started with a set of short presentations on our recent research findings and the motivations for our interests in these organisms.  On the second day we then moved on to discussing ideas for future collaborations between the participants and how that work might be funded in the future.  Presentations and discussions were mainly held in the Basket House, named for obvious reasons:

2019-06-12 09.30.08

2019-06-12 09.29.41.jpg

Each of us was also interviewed on camera to build an online archive of the work we do and why we do it.

The advantage of face-to-face meetings such as this, and why Skype and so forth can never fully replace them, is the free-flowing conversations that occur within the formal sessions and outside them.  Among the many things that I learned from presentations and discussions were:

  • The California monarch population has declined by almost 90% this year and there’s an urgent need to understand why this has happened.¬† Climate change has been implicated, especially in relation to the increased frequency of wildfires in this region.
  • Existing methods of nectar extraction from milkweed flowers may strongly underestimate the volume available to flower visitors, and overestimate the sugar concentration.¬† Using a small centrifuge to spin out the nectar seems to be the most effective method.
  • Asclepias arrived in the Americas (probably from Africa) some 10 million years ago (mya).¬† However Danaus only arrived about 3.7 mya, so there was a long period of time in which the plant was not co-evolving with one of its major herbivores.
  • There is strong evidence of migrations along the Andes by a close relative of the monarch, Danaus erippus.¬† Migrations in this group of butterflies therefore extends beyond the iconic D. plexippus.
  • Sonoran Desert Asclepias are sister group to the rest of the New World Asclepias spp.¬† The exact route by which the African ancestors made it to the Americas is unknown, it could be via Asia and the Bering Strait, or across the Atlantic by way of island stepping stones.¬† Either way, the phylogenetic position of the Sonoran milkweeds implies that a lot of Asclepias species have gone extinct over the past 10 million years.
  • Climate change seems to be resulting in more complex and unpredictable windows of opportunity for monarch egg laying and caterpillar development.¬† The monarchs are most successful in late spring and late summer, but not in all years.
  • Likewise, extreme precipitation of the kind I recently documented in the USA is also likely to have a negative impact on the monarchs and their host plants.
  • There is molecular evidence that monarch butterflies went through a huge genetic bottleneck in the 1960s-1970s, for reasons that are not altogether clear.

All of these findings, and more that there isn’t space to document, point to a need for further research to better understand these organisms if we wish to secure their futures.

By the end of the workshop we had made some concrete decisions on future steps:

  • ¬†The African members of the genus Asclepias, plus about 20 other closely related genera, require more critical taxonomic and phylogenetic assessment in order to understand their systematic relationship to the North and South American Asclepias species.
  • A poster (or possibly series of posters) will be produced that explain the ecology of the monarch, its relationship with milkweeds, the patterns of migration, and the value of milkweeds as nectar sources for a diverse range of pollinators.
  • We will explore a multi-agency grant application to further develop the collaborations between participants.

The final day of the workshop involved a field trip around Virginia to see some of the local milkweed species, many of which live in woodland.  That surprised me: I always envision Asclepias spp. as grassland or desert plants.  The leader of the field trip, Mark Fishbein, had a hit list of 8 species that he wanted us to see and in the end we located all of them, including a rare hybrid population of A. syriaca x A. exaltata, plus the tropical milkweed Asclepias curassavica planted in the OSGF garden, plus the distant relative dogbane Apocynum cannabinum.  Here are some images from that day:

2019-06-13 10.52.15

Searching for milkweeds along Skyline Drive, Shenandoah National Park

 

2019-06-13 10.56.00

Poke milkweed – Asclepias exaltata

 

2019-06-13 10.57.49

Hunting that elusive hybrid milkweed!

 

2019-06-13 11.02.21

Caterpillar of the monarch butterfly feeding on a milkweed

 

2019-06-13 12.20.21

Alessandro Rapini intent on getting a good photo of the A. syriaca x A. exaltata hybrid

 

2019-06-13 12.36.32

A bumblebee and a butterfly visiting A. exaltata

 

2019-06-13 15.42.41

Purple milkweed – Asclepias purpurascens

 

2019-06-13 17.01.45

Common milkweed – Asclepias syriaca – with a visiting skipper butterfly

 

2019-06-13 18.17.46

Climbing milkvine – Matelea obliqua – a member of a largely fly-pollinated group of New World asclepiads

 

Thanks to my fellow workshoppers for such a stimulating and enjoyable meeting, and to all the staff at Oak Spring for making us feel so welcome.  Particular thanks go to Prof. Sir Peter Crane who, as President of the Oak Spring Garden Foundation, was hugely supportive of the workshop, and to Angie Ritterpusch, Head of Events and Guest Services, for logistical and organisational support.

 

When did the flowering plants evolve? Two new studies come to different conclusions

2019-04-23 17.42.40.jpg

The angiosperms (flowering plants) are far and away the most diverse group of plants ever to have evolved.¬† There are an estimated 350,000 to 370,000 species, more than all other groups of plants (ferns, conifers, cycads, mosses, etc.) combined, living and extinct.¬† The origin of the flowering plants was termed an “abominable mystery” by Charles Darwin – or perhaps it wasn’t:¬†see this essay by Prof. Richard Buggs for an alternative view of what Darwin was describing, and this paper by Prof. William Friedman giving a different interpretation.

These disagreements about what Darwin meant are as nothing compared to disagreements about when the flowering plants actually evolved and how we interpret fossils and evidence from molecular phylogenies.¬† Two new studies illustrate this point: they use some of the same information to come to completely different conclusions.¬† I’ve copied the details and abstracts below, with links to the originals, and emphasised the areas of disagreement in bold text.¬† And I’m going to leave it at that; I don’t have a horse in this race and I have no idea which (if either) is correct.

There are, however, profound implications for understanding when and how relationships between flowering plants and their pollinators evolved, as I noted in my recent review of pollinator diversity.  If the much earlier, Triassic origin of the angiosperms is correct then perhaps the earliest flowering plants did not co-opt pollinators that were already servicing gymnosperms.  Perhaps the relationships between plants and pollinators originated with the (Triassic) angiosperms and the gymnosperms subsequently evolved to exploit this.  My feeling is that only more, better fossils will provide definitive answers.

Here’s the details of the studies:

Coiro et al. (2019) How deep is the conflict between molecular and fossil evidence on the age of angiosperms? New Phytologist

Abstract: The timing of the origin of angiosperms is a hotly debated topic in plant evolution. Molecular dating analyses that consistently retrieve pre‚ÄźCretaceous ages for crown‚Äźgroup angiosperms have eroded confidence in the fossil record, which indicates a radiation and possibly also origin in the Early Cretaceous. Here, we evaluate paleobotanical evidence on the age of the angiosperms, showing how fossils provide crucial data for clarifying the situation. Pollen floras document a Northern Gondwanan appearance of monosulcate angiosperms in the Valanginian and subsequent poleward spread of monosulcates and tricolpate eudicots, accelerating in the Albian. The sequence of pollen types agrees with molecular phylogenetic inferences on the course of pollen evolution, but it conflicts strongly with Triassic and early Jurassic molecular ages, and the discrepancy is difficult to explain by geographic or taphonomic biases. Critical scrutiny shows that supposed pre‚ÄźCretaceous angiosperms either represent other plant groups or lack features that might confidently assign them to the angiosperms. However, the record may allow the Late Jurassic existence of ecologically restricted angiosperms, like those seen in the basal ANITA grade. Finally, we examine recently recognized biases in molecular dating and argue that a thoughtful integration of fossil and molecular evidence could help resolve these conflicts.

 

Li et al. (2019) Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants

Abstract: Angiosperms are by far the most species-rich clade of land plants, but their origin and early evolutionary history remain poorly understood. We reconstructed angiosperm phylogeny based on 80‚ÄČgenes from 2,881‚ÄČplastid genomes representing 85% of extant families and all orders. With a well-resolved plastid tree and 62‚ÄČfossil calibrations, we dated the origin of the crown angiosperms to the Upper Triassic, with major angiosperm radiations occurring in the Jurassic and Lower Cretaceous. This estimated crown age is substantially earlier than that of unequivocal angiosperm fossils, and the difference is here termed the ‚ÄėJurassic angiosperm gap‚Äô. Our time-calibrated plastid phylogenomic tree provides a highly relevant framework for future comparative studies of flowering plant evolution.

 

Pollinator availability, mating system and variation in flower morphology in a tropical savanna tree – a new, open-access study

Curatella image by Pedro Lorenzo

Widespread plant species can encounter a variety of different pollinators across their distributional range.¬† This in turn can result in local adaptation of flowers to particular pollinators, or to an absence of pollinators that results in adaptations for more self pollination.¬† ¬†A newly published study by one of my former PhD students,¬†Andr√© Rodrigo Rech in Brazil, has looked at this in the widespread South American savanna tree Curatella americana.¬†¬†Andr√© studied 10 populations separated in space by thousands of kilometres, in cerrado vegetation, one of the most threatened habitat types in Brazil.¬† Here’s the abstract:

Widely distributed organisms face different ecological scenarios throughout their range, which can potentially lead to micro-evolutionary differentiation at specific localities. Mating systems of animal pollinated plants are supposed to evolve in response to the availability of local pollinators, with consequent changes in flower morphology. We tested the relationship among pollination , mating system, and flower morphology over a large spatial scale in Brazilian savannas using the tree Curatella americana (Dilleniaceae). We compared fruit set with and without pollinators in the field, and analyzed pollen tube growth from self- and cross-pollinated flowers in different populations. Populations with higher natural fruit set also had lower fruit set in bagged flowers, suggesting stronger barriers to self-fertilization. Furthermore, higher levels of autogamy in field experiments were associated with more pollen tubes reaching ovules in self-pollinated flowers. Morphometric studies of floral and leaf traits indicate closer-set reproductive organs, larger stigmas and smaller anthers in populations with more autogamy. We show that the spatial variation in mating system, flower morphology and pollination previously described for herbs also applies to long-lived, perennial tropical trees, thus reemphasizing that mating systems are a population-based attribute that vary according to the ecological scenario where the plants occur

Here’s the full citation with a link to the paper which is open access:

Rech, A.R., Ré Jorge, L., Ollerton, J. & Sazima, M. (2018) Pollinator availability, mating system and variation in flower morphology in a tropical savannah tree. Acta Botanica Brasilica (in press)

The illustration of Curatella americana  and its pollinators is by Pedro Lorenzo.

This paper is a contribution to a special issue of Acta Botanica Brasilica dedicated to floral biology and pollination biology in Brazil.¬† It’s all open access and if you follow that link you can download the papers.

The evolution of pollination systems in one of the largest plant families: a new study just published – download it for free

Figure 1 JUNE revision

Interactions between flowering plants and the animals that pollinate them are known to be responsible for part of the tremendous diversity of the angiosperms, currently thought to number at least 350,000 species.¬† But the diversity of different types of pollination system (bird, bee, moth, fly, etc.) is unknown for most large, related groups of plants (what systematists term “clades”) such as families and subfamilies.¬† In addition we know little about how these interactions with pollinators have evolved over time and in different parts of the world.¬† Only a handful of groups of flowering plants have been studied with respect to questions such as:

How much do we currently know about the diversity of pollination systems in large clades?

How is that diversity partitioned between the smaller clades (e.g. subfamilies, tribes, genera) of a family, and what are the evolutionary transitions between the major groups of pollinators?

Do these pollination systems vary biogeographically across the clade’s range?

These sorts of questions have been addressed for the massive, globally distributed Apocynaceae (one of the top 10 or 11 largest angiosperm families with more than 5,300 species) in a study just published using a new database of pollinators of the family.¬† What’s more, the work is open access and anyone can download a copy for free.¬† Here’s the citation with a link to the paper:

Ollerton, J., Liede-Schumann, S., Endress, M E., Meve, U. et al. [75 authors in all] (2019) The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study.¬†Annals of Botany¬†123: 311‚Äď325

In this study we have shown that (among other things):

  • The family is characterised by an enormous diversity of pollination systems involving almost all of the major pollen vectors and some that are nearly unique to the Apocynaceae.
  • Earlier diverging clades have a narrower range of pollination systems than those that evolved later.
  • Transitions from one type of pollination system to another are evolutionarily constrained, and rarely or never occur, whereas others have taken place much more often, e.g. between wasp and beetle pollination.
  • There is significant convergent evolution of pollination systems, especially fly and moth pollination, by geographically and phylogenetically distinct clades.

You’ll notice that there are 75 (!) authors on this paper.¬† That’s because we’ve pulled together a huge amount of previously unpublished data and used some state of the art analyses to produce this work.¬† It was a monumental effort, especially considering that my colleague Sigrid Liede-Schumann and I only decided to push ahead with this project about a year ago when we chatted at the International Botanical Congress that I posted about at the time.¬† In truth however the origins of this paper go back over 20 years to 1997 when when Sigrid and I published a study of what was then known about pollination systems in the Asclepiadaceae (the asclepiads).

In that paper we said that the research “is intended to be ongoing…[we]…hope to re-review asclepiad pollination within the next decade”.¬† At the time I didn’t think it would actually take more than 20 years!¬† However over that period a lot has changed.¬† For one thing the Asclepiadaceae no longer exists, broken up and subsumed within a much larger Apocynaceae.¬† Also, I’ve done a lot of work in the field and in the herbarium on some of the smaller groups within the family, such as Ceropegia.¬† Others, including many of my co-authors, have also been working on different groups in various parts of the world.¬† Finally the level of sophistication of the analyses we are now able to do has increased beyond recognition compared to what we could achieve in the mid-1990s.¬† All of this means that now is the right time to produce this study.

Having said all of that, this is still a work in progress.¬† Our Pollinators of Apocynaceae Database contains a sample of just over 10% of the species in the family.¬† So lots more data on plant-pollinator interactions needs to be collected before we say we fully understand how pollination systems have evolved in this most remarkable family.¬† I’d be happy to talk with anyone who is interested in the family and being involved in future data collection.

The database will be freely available to anyone who wants to use it – lots more can be done with this information and, once again, I’m happy to chat with potential collaborators.

I was recently interviewed about the study, and about plant-pollinator interactions and the Apocynaceae more generally, for the¬†In Defense of Plants podcast – here’s a link to that interview.

Finally, I’d like to express my sincerest thanks to my co-authors on this study – I really couldn’t have done it without you guys!