Category Archives: Mammals

The chapter titles for my book: Pollinators & Pollination: Nature and Society

A few people have asked me about what’s covered in my book which is being published by Pelagic and is currently in production. Here’s the chapter titles:

Preface                                                                                                                        

1         The importance of pollinators and pollination                               

2         More than just bees: the diversity of pollinators                           

3         To be a flower                                                                                               

4         Fidelity and promiscuity in Darwin’s entangled bank                 

5         The evolution of pollination strategies                                              

6         A matter of time: from daily cycles to climate change                 

7         Agricultural perspectives                                                                        

8         Urban environments                                                                                  

9         The significance of gardens                                                                    

10      The shifting fates of pollinators                                                            

11      New bees on the block                                                                              

12      Managing, restoring and connecting habitats                                 

13      The politics of pollination                                                                        

14      Studying pollinators and pollination                                                  

As you can see it’s a very wide-ranging overview of the subject, and written to be accessible to both specialists and non-specialists alike. To quote what I wrote in the Preface:

“While the book is aimed at a very broad audience, and is intended to be comprehensible to anyone with an interest in science and the environment, and their intersection with human societies, I hope it will also be of interest to those dealing professionally with plants and pollinators. The subject is vast, and those working on bee or hoverfly biology, for example, or plant reproductive ecology, may learn something new about topics adjacent to their specialisms. I certainly learned a lot from writing the book.”

The book is about 100,000 words in length, lots of illustrations, and there will be an index. My copy editor reckons there’s 450 references cited, though I haven’t counted. I do know that they run to 28 pages in the manuscript, and that’s with 11pt text. All going well it will be published before Christmas.

8 Comments

Filed under Bees, Biodiversity, Biodiversity and culture, Butterflies, Ecosystem services, Gardens, Honey bees, Hoverflies, IPBES, Journal of Pollination Ecology, Macroecology, Mammals, Moths, Mutualism, Neonicotinoids, Personal biodiversity, Pollination, Tenerife, Urban biodiversity, Wasps

Get a 30% discount if you pre-order my new book Pollinators & Pollination: Nature and Society

PollinatorsandPollination-frontcover

In the next few months my new book Pollinators & Pollination: Nature and Society will be published.  As you can imagine, I’m very excited! The book is currently available to pre-order: you can find full details here at the Pelagic Publishing website.  If you do pre-order it you can claim a 30% discount by using the pre-publication offer code POLLINATOR.

As with my blog, the book is aimed at a very broad audience including the interested public, gardeners, conservationists, and scientists working in the various sub-fields of pollinator and pollination research. The chapter titles are as follows:

Preface and Acknowledgements
1. The importance of pollinators and pollination
2. More than just bees: the diversity of pollinators
3. To be a flower
4. Fidelity and promiscuity in Darwin’s entangled bank
5. The evolution of pollination strategies
6. A matter of time: from daily cycles to climate change
7. Agricultural perspectives
8. Urban environments
9. The significance of gardens
10. Shifting fates of pollinators
11. New bees on the block
12. Managing, restoring and connecting habitats
13. The politics of pollination
14. Studying pollinators and pollination
References
Index

 

 

5 Comments

Filed under Bees, Biodiversity, Biodiversity and culture, Birds, Butterflies, Climate change, Ecosystem services, Evolution, Flies, Gardens, History of science, Honey bees, Hoverflies, IPBES, Macroecology, Mammals, Moths, Mutualism, Neonicotinoids, Personal biodiversity, Pollination, Rewilding, Tenerife, Urban biodiversity

The other pollinators: some recent videos that don’t focus on bees

The review of the biodiversity of pollinators that I published in 2017 estimated that on average about 18% of animal-pollinated plants within natural communities are specialised on bees. Bees also contribute to the reproduction of many of the plants that have generalist pollination systems, which account for perhaps 50% of plant species on average. But that stills leaves a significant fraction (maybe one third) that are specialised on the “other” pollinators, including flies, beetles, birds, bats, and so forth. There is growing awareness of how important these pollinators are for wild plant and crop pollination, but bees still hog most of the pollinator-related media.

In the last couple of weeks I’ve been sent links to videos that focus on these other pollinators so I thought I’d compile a list that show us something of the true diversity of animals that act as pollen vectors. Please add your own suggestions in the comments:

Elephant shrews, lizards, cockroaches*, crustaceans, and biting midges are covered in this SciShow video (HT Steve Hawkins)

Opossum pollination of a Brazilian plant is featured in this video (HT Felipe Amorim)

Here’s a recorded webinar on bird pollination by Dan Scheiman from Audubon Arkansas

A few videos on bat pollination by Jim Wolfe can be found here and here and here, and this is a short one that’s a supplement to a recent Journal of Applied Ecology paper on cactus pollination by Constance J. Tremlett et al.

The fascinating ecology of skunk cabbage (Symplocarpus foetidus), including fly and possibly beetle pollination, is the topic of this video.

Fly pollination is also highlighted in this short piece by the Natural History Museum, and this one deals with drone flies as managed pollinators for agriculture in New Zealand.

Enjoy!

*Watch out for my report on a newly discovered cockroach-pollinated plant….hopefully coming later this year…..

5 Comments

Filed under Biodiversity, Birds, Brazil, Flies, Hoverflies, Mammals, Mutualism, Pollination

How are the Australian bushfires affecting biodiversity? Australia reflections part 4

2019-12-24 14.10.52

Australia’s vast, unprecedented wildfires are going to have a devastating effect on the biodiversity of the country.  To fully understand why this is the case, you need to know something about where species occur and why.

Australia is a land of lizards.  Karin and I see them everywhere we walk and frequently encounter them in gardens.  Reptiles are the most diverse group of vertebrates in Australia, with more than 1000 described species.  Of these, over half are lizards.  One family alone, the skinks (Scincidae) accounts for almost 440 species, with species new to science being described every year.  Some of these lizards are physically extremely impressive, particularly the dragons (Agamidae – about 90 species) and the monitors or goannas (Varanidae – 30 species).  We encountered lace monitors (Varanus varius) over Christmas at Port Macquarie, in coastal bushland and (very dry) rainforest at Sea Acres National Park (see photos above and below):

2019-12-26 10.06.02

Spot the goanna:

2019-12-24 11.10.25

Growing up to two metres in length, they seem to arrogantly swagger through the bush as though they own it; which of course they sort of do – they were here millions of years before people arrived.  Smaller but still impressive are the Eastern water dragons (Intellagama lesueurii) – here’s male and female checking one another out:

2019-12-24 11.23.26

Much smaller but more charming are the various skinks that seem to inhabit every garden and green space in the city; this one seems to be the Eastern water skink (Eulamprus quoyii):

2020-01-02 13.02.24

And here’s where we get to the main point of this post.  All of the lizards I mentioned above are endemic to Australia, it’s the only place on Earth where they naturally occur.  But they are all widespread species found across a huge area in the east of the country, from Queensland to Victoria, a linear distance of over 2,000 km.  This is unusual for species in Australia, and indeed in the rest of the world; most organisms naturally occur over a much smaller area.  To see what I mean, look at the image below from Steve Wilson & Gerry Swan’s book A Complete Guide to Reptiles of Australia:

2020-01-02 18.44.18 (1)

The maps adjacent to each species description illustrate the distribution of these organisms. The garden skink and the grass skink live in suitable habitat over vast areas. But the other two species are much more restricted in their ranges, which are so small that they need to be highlighted with arrows.  The elongate sunskink (Lampropholus elongata) for instance is found only “in the vicinity of Grundy Fire Tower and “The Flags”” at 1180-1455 m in the Great Dividing Range.  This is more typical of species distributions in Australia: most are restricted, and some are extremely restricted.  This is true of other reptiles, plants, birds, insects and fungi, in fact all major groups, not just the lizards.  Such a skewed distribution of species occurrences, with many rare and localised, and a few common and widespread, is natural; it’s an outcome of the processes of natural selection and evolution.  But it’s been exacerbated by habitat loss across the world, including Australia.  According to the Wilderness Society of Australia, the country “has lost 25% of rainforest, 45% of open forest, 32% of woodland forest and 30% of mallee forest in 200 years”.

But even these figures do not reflect the full scale of the loss: I’ve seen estimates that more than 90% of the temperate rainforest exemplified by Sea Acres National Park has been destroyed.  Given what I’ve said about the limited distribution of many species, that must mean that locally endemic species have gone extinct in the past.  The huge extent of some of the Australian bushfires, individually covering tens of thousands of hectares and collectively around 6 million hectares, means that most or all of a species’ population could be wiped out.  To give just one example, a small marsupial mammal, the Kangaroo Island dunnart (Sminthopsis aitkeni), is found only on Kangaroo Island.  Indeed, it’s restricted to the western part of the island, where a large bushfire has been raging out of control in recent days.  We will only know whether this species has survived, and in what numbers, once ecologists are able to survey the area once the danger is over.

However even for widespread species the fires can have a massive effect on their genetic diversity, which is an important component of biodiversity.  When we lose individuals from a population we lose genetic variants too.  A recent assessment by ecologists at the University of Sydney has suggested that almost half a billion reptiles, mammals and birds have been killed so far by the fires.  Losses of trees and other flowering plants, as well as insects, spiders and so forth, will be much, much greater of course.

This destruction of biodiversity has a human impact too.  On television news reports we’ve heard farmers and fire fighters describing the emotional trauma of seeing animals on fire and hearing the screams of koalas as they burn in the tree tops.  All of this biodiversity serves to ensure that Australian ecosystems function effectively and sustainably now and in the future. Ecosystems which are crucial for reducing the future effects of climate change, for ensuring supplies of fresh water, supporting agriculturally-important pollinators and predators of pests, and bringing in billions of tourist dollars.  All in all these fires are a tragedy for Australian biodiversity, as well as for the human population of this fabulous country.

10 Comments

Filed under Australia, Biodiversity, Biogeography, Climate change, Mammals

Hornets are pollinators too!

20180926_121735

This morning I spent a very pleasant couple of hours walking around the farm that’s at the heart of the Warner Edwards Gin Distillery, in Harrington just north of Northampton.  We are setting up some collaborations around conservation and sustainability between the university and Warner Edwards.  The first of these involves surveys of their farm by one of our final year undergraduates, Ellie West, to assess pollinator diversity and abundance, and opportunities for habitat enhancement on the farm.

One of the highlights of this morning’s visit was seeing this gorgeous hornet (Vespa crabro) taking nectar from common ivy (Hedera helix).  I think that she’s a queen stocking up on energy prior to hibernating.  But just look at how much pollen she’s carrying!  There’s every chance that she’s a very effective pollinator of ivy, which is a key nectar resource at this time of year.  It’s such an important plant in other ways too: ivy binds the landscape physically and ecologically, in ways few other native plants do.  Pollination by insects such as hornets (and hundreds of other species) results in berries that are eaten by birds and mammals, whilst the branches and dense, evergreen canopy provides nesting sites for birds and shelter for over wintering insects.

Hornets and ivy: two of my favourite native British species.

20180926_121532

12 Comments

Filed under Biodiversity, Birds, Mammals, Pollination, University of Northampton, Wasps

Pollinator biodiversity and why it’s important: a new review just published – download it for free

P1110763

In a new review paper that’s just been published in the Annual Review of Ecology, Evolution and Systematics I have looked at the question of just how diverse the pollinators are, and why pollinator biodiversity is ecologically important and therefore worthy of conservation.  I’ve taken a deep time and wide space approach to this, starting with what the fossil record tells us about when animal pollination evolved and the types of organisms that acted as pollinators in the past (the answer may surprise you if you’re unfamiliar with the recent paleontological literature on this topic).  Some of the most prominent biogeographical patterns have been highlighted, and I have tried to estimate the global diversity of currently known pollinators.  A conclusion is that as many as 1 in 10 described animal species may act as pollen vectors.

As well as this descriptive part of the review I’ve summarised some recent literature on why pollinator diversity matters, and how losing that diversity can affect fruit and seed set in natural and agricultural contexts.  Extinction of pollinator species locally, regionally, and globally should concern us all.

Although I was initially a little worried that the review was too broad and unfocused, having re-read it I’m pleased that I decided to approach the topic in this way.  The research literature, public policy, and conservation efforts are currently moving at such a fast pace that I think it’s a good time to pause and look at the bigger picture of what “Saving the Pollinators” actually means and why it’s so important.  I hope you agree and I’d be happy to receive feedback.

You can download a PDF of the review entitled Pollinator Diversity: Distribution, Ecological Function, and Conservation by following that link.

Pollination ecologists should also note that in this same volume of Annual Review of Ecology, Evolution and Systematics there’s a review by Spencer Barrett and Lawrence Harder called The Ecology of Mating and Its Evolutionary Consequences in Seed Plants.  If you contact those authors I’m sure they’d let you have a copy.

14 Comments

Filed under Apocynaceae, Bees, Biodiversity, Biogeography, Birds, Butterflies, Climate change, Ecosystem services, Evolution, Honey bees, Hoverflies, IPBES, Macroecology, Mammals, Moths, Mutualism, Neonicotinoids, Pollination, Urban biodiversity, Wasps

Managing for Pollinators – a special issue of the Natural Areas Journal

Inula at Ravensthorpe 20160710_145426The October issue of the Natural Areas Journal is a special one devoted to the topic of “Managing for Pollinators”.  All of the papers have a North American focus but I think that they will be of general interest to anyone, anywhere in the world, who is concerned with how best to manage habitats for pollinators.  Here’s the contents page of the issue, copied and pasted from the site; I’m not sure if the full text links will work if you or your institution does not have full text access, but you should at least be able to view the abstracts:

Editorial: Pollinators are in Our Nature Full Access

Introduction by USFS Chief Tidwell – Pollinators and Pollination open access

pg(s) 361–361

Citation : Full Text : PDF (227 KB)

National Seed Strategy: Restoring Pollinator Habitat Begins with the Right Seed in the Right Place at the Right Time Full Access

Peggy Olwell and Lindsey Riibe
pg(s) 363–365

Citation : Full Text : PDF (1479 KB)

Hummingbird Conservation in Mexico: The Natural Protected Areas System Full Access

M.C. Arizmendi, H. Berlanga, C. Rodríguez-Flores, V. Vargas-Canales, L. Montes-Leyva and R. Lira
pg(s) 366–376

Abstract & References : Full Text : PDF (1302 KB)

Floral Guilds of Bees in Sagebrush Steppe: Comparing Bee Usage of Wildflowers Available for Postfire Restoration Full Access

James H. Cane and Byron Love
pg(s) 377–391

Abstract & References : Full Text : PDF (1500 KB)

The Role of Floral Density in Determining Bee Foraging Behavior: A Natural Experiment Full Access

Bethanne Bruninga-Socolar, Elizabeth E. Crone and Rachael Winfree
pg(s) 392–399

Abstract & References : Full Text : PDF (1219 KB)

Common Methods for Tallgrass Prairie Restoration and Their Potential Effects on Bee Diversity Full Access

Alexandra Harmon-Threatt and Kristen Chin
pg(s) 400–411

Abstract & References : Full Text : PDF (300 KB)

Status, Threats and Conservation Recommendations for Wild Bumble Bees (Bombus spp.) in Ontario, Canada: A Review for Policymakers and Practitioners Full Access

Sheila R. Colla
pg(s) 412–426

Abstract & References : Full Text : PDF (420 KB)

Conserving Pollinators in North American Forests: A Review Full Access

James L. Hanula, Michael D. Ulyshen and Scott Horn
pg(s) 427–439

Abstract & References : Full Text : PDF (1711 KB)

Dispersal Limitation, Climate Change, and Practical Tools for Butterfly Conservation in Intensively Used Landscapes Full Access

Laura E. Coristine, Peter Soroye, Rosana Nobre Soares, Cassandra Robillard and Jeremy T. Kerr
pg(s) 440–452

Abstract & References : Full Text : PDF (4647 KB) : Supplementary Materials

Revised State Wildlife Action Plans Offer New Opportunities for Pollinator Conservation in the USA Full Access

Jonathan R. Mawdsley and Mark Humpert
pg(s) 453–457

Abstract & References : Full Text : PDF (249 KB)

Diet Overlap of Mammalian Herbivores and Native Bees: Implications for Managing Co-occurring Grazers and Pollinators Full Access

Sandra J. DeBano, Samantha M. Roof, Mary M. Rowland and Lauren A. Smith
pg(s) 458–477

Abstract & References : Full Text : PDF (1537 KB)

The Role of Honey Bees as Pollinators in Natural Areas Full Access

Clare E. Aslan, Christina T. Liang, Ben Galindo, Hill Kimberly and Walter Topete
pg(s) 478–488

Abstract & References : Full Text : PDF (467 KB)

Food Chain Restoration for Pollinators: Regional Habitat Recovery Strategies Involving Protected Areas of the Southwest Full Access

Steve Buckley and Gary Paul Nabhan
pg(s) 489–497

Abstract & References : Full Text : PDF (732 KB)

Forbs: Foundation for Restoration of Monarch Butterflies, other Pollinators, and Greater Sage-Grouse in the Western United States Full Access

R. Kasten Dumroese, Tara Luna, Jeremiah R. Pinto and Thomas D. Landis
pg(s) 499–511

Abstract & References : Full Text : PDF (1716 KB)

Using Pollinator Seed Mixes in Landscape Restoration Boosts Bee Visitation and Reproduction in the Rare Local Endemic Santa Susana Tarweed,Deinandra minthornii Full Access

Mary B. Galea, Victoria Wojcik and Christopher Dunn
pg(s) 512–522

Abstract & References : Full Text : PDF (2880 KB)

Save Our Bats, Save Our Tequila: Industry and Science Join Forces to Help Bats and Agaves Full Access

Roberto-Emiliano Trejo-Salazar, Luis E. Eguiarte, David Suro-Piñera and Rodrigo A. Medellin
pg(s) 523–530

Abstract & References : Full Text : PDF (463 KB)

The Importance of Phenological Diversity in Seed Mixes for Pollinator Restoration Full Access

Kayri Havens and Pati Vitt
pg(s) 531–537

Abstract & References : Full Text : PDF (2208 KB) : Supplementary Materials

Stewardship in Action Full Access

Sarah Riehl
pg(s) 538–541

Citation : Full Text : PDF (595 KB)

Leave a comment

Filed under Bees, Biodiversity, Birds, Butterflies, Honey bees, Hoverflies, Mammals, Mutualism, Pollination, Wasps

Emerging threats to the Białowieża Forest, one of Europe’s last remaining wilderness areas

From various news sources and personal contacts I’m hearing about some emerging threats to the Białowieża Forest, which at 216,200 ha (2,162 km2 or 835 square miles) is one of Europe’s largest and most ancient forested wilderness areas, and one of the few places where you’ll still see European bison (Bison bonasus)roaming free.

Despite its designation as a World Heritage Site, in recent months the Polish government has revealed plans to increase the amount of logging in the forest, ostensibly as a tree disease control measure.  However Polish scientists dispute this and claim that the real motivation is commercial – see the commentary and letters in this week’s Nature.  Here’s a quote from that article which provides some context to the concerns:

“[the] Białowieża management plan limits logging in the forest to 48,000 cubic metres of wood per year — enough to allow locals to gather firewood. But on 10 November, the local forest administration proposed an amendment that would allow large-scale logging in sections outside the central 17% of the forest that is a national park. They cited an outbreak of the bark beetle pest (Ips typographus) in Białowieża’s Norway spruce (Picea abies). In one forest district where logging is currently limited to 6,000 cubic metres per year, the allowable yearly volume would increase to 53,000 cubic metres”.

 

Interestingly, both Ips typographus and Picea abies are native to these forests and any large-scale outbreak would probably constitute a disturbance that is part of the natural dynamics of the forest. A recent piece on the National Geographic site by conservation biologist Stuart Pimm is worth quoting from in this regard:

“To…scientists studying biodiversity, the main value of the Białowieża Forest is accumulated in a massive occurrence of large and old trees, high amounts of dead-wood and natural dynamics of forest stands all being very unique to this area and supporting thousands of different specialised species ranging from birds and mammals using cavities or building nests in the canopy to lichens, fungi and microbes dependent on different stages of tree life and its decomposition.  It is not surprising that Białowieża Forest has been an invaluable reference area for scientists studying natural characteristics of European forests.” [my emphasis]

 

This is not the first time that concerns have been raised about the Białowieża Forest – here’s an article from the Guardian newspaper from 2011:  http://www.theguardian.com/world/2011/apr/06/poland-environmentalists-foresters-primeval-forest

Is it too much to hope that the Polish government takes notice and strengthens, not weakens, the protection of its natural heritage?  And allows natural processes to determine what happens in this woodland, rather than trying to manage every aspect of its ecology.

Leave a comment

Filed under Biodiversity, Biodiversity and culture, Mammals, Rewilding

Six Kingdoms for Christmas: the cultural biodiversity of a winter festival

P1120504

Since beginning this blog in 2012 I’ve traditionally posted one or two Christmas-themed items around this time of year, including a piece on “Thanking the pollinators for Christmas” and a true story from 2013, “A Christmas vignette“.  The role of pollinators in producing much of the traditional Christmas fare has subsequently been picked up by others (last year the University of Bristol, this year a blog from Trinity College Dublin) so I’ve decided to break with tradition and consider the ways in which biodiversity (both wild and farmed, though the latter of course originated as the former) adds to the cultural experience of Christmas through its traditions and rituals.

In this regard I’m coming at the topic as a north-European agnostic who values Christmas as an opportunity to relax and unwind at the darkest, coldest* part of the year, rather than as a Christian.  And because I’m a British scientist much of what I say relates to British customs, though I’ve tried to include non-British examples where I’m aware of them – feel free to let me know about examples I’ve missed by commenting below.

I’ve decided to structure this post taxonomically and focus on a Six Kingdom Classification** of life on Earth as that’s been the theme of my first year undergraduate teaching since October.  Four of the six Kingdoms can be dealt with fairly quickly as their significance to Christmas is marginal or non-existent.  The two “bacterial” Kingdoms (Archaea and Eubacteria) contribute little to Christmas other than providing much of the gut flora that’s going to help us digest our Christmas dinner. Important but not specifically festive.  Likewise the protists and algae (Kingdom Protoctista) add nothing specific to Christmas unless there are traditions associated with seaweed of which I am unaware.

The other three Kingdoms are the ones where cultural biodiversity associations are more apparent.  The Kingdom Fungi (yeasts, mushrooms and moulds) provides us with several Christmas traditions including (in Germany) hanging mushrooms on the Christmas tree for good luck, and in parts of Scandinavia hanging strings of dried mushrooms around the house as decorations and as a source of winter food.  There is also the association between the red-and-white colour scheme of fly agaric magic mushrooms (Amanita muscaria) and the robes of Santa Claus, though I’ve seen that idea debunked in a few places and it appears that the “traditional” interpretation of Santa’s suit originated in the USA in the 19th century.

The Kingdom Animalia (both invertebrates and vertebrates) affords us a host of cultural connections to Christmas.  Birds include the turkey (Meleagris gallopavo) which in times past were famously walked to London from Norfolk; the domestic goose (Anser anser domesticus); and much of the song Twelve Days of Christmas refers to birds, including the turtle dove (Streptopelia turtur) one of the UK’s most declining and threatened bird species.  Mammals we associate with Christmas include of course reindeer (Rangifer tarandus) pulling Santa’s sleigh, led by the nasally-advantaged Rudolph, but also domesticated farm animals.  For example in Denmark in osme households it’s more traditional to eat pork (Sus scrofa domesticus) for Christmas dinner than goose.

Staying with the vertebrates, in our house it’s traditional to have smoked salmon (Salmo salar) with scrambled eggs for breakfast on Christmas Day, and (again in Denmark) sild (Clupea harengus) is also traditionally served as a starter, but I don’t know of other fish traditions.  Likewise I’m unaware of any invertebrates that are specifically associated with Christmas, though there have been recent reports of sustainably-sourced lobsters (Homarus americanus and H. gammarus)  becoming “traditional” in Europe.  There are also some local traditions such as honey bees singing in their hives on Christmas Eve.

The last of the Six Kingdoms is the Plantae, which, whilst the least taxonomically diverse, provides us with a wealth of cultural associations to Christmas.  These traditionally include evergreen plants that have been used to decorate homes, probably since the earliest pagan Yuletide festivals, such as: Christmas trees (various conifers in the genera Picea, Abies and Pinus); European ivy (Hedera helix); holly (Ilex aquifolium); and mistletoe (Viscum album).  However such traditions evolve and adapt to local needs and availability of plants.  For example in North and South America other genera of conifers not found in europe, such as Pseudotsuga and  Araucaria, may be used as Christmas trees***.  Likewise the absence of European mistletoe in North America means that people have adopted native mistletoes in the related genus Phoradendron for decorating and snogging traditions.  Over at her blog, ecologist Manu Saunders has recently discussed how native Australian species can substitute European plants for Christmas decorations.

The final example from the Plantae is the poinsettia (Euphorbia pulcherrima) which I’ve pictured above.  In many ways this is an unusual plant to have such a strong cultural association with Christmas: it’s a mildly toxic species of spurge from tropical Mexico that was introduced to North America in the 19th century, then subsequently to Europe.  However its festive connotations date back to the earliest period of Spanish colonisation in the 16th century, so it’s older than some of the other Christmasy traditions I’ve discussed.

Of course biodiversity is about more than just species and taxonomic diversity, it also encompasses the diversity of habitats in which that life is found.  Here too we see strong influences of the natural world on the culture of Christmas, including festive scenes of snow-bound boreal conifer forest.  As our planet warms, however, that might be a view that is found only on Christmas cards and old movies, rather than directly experienced*.

And on that sobering note, I wish all of my readers and restful and biodiverse holiday: have a great Christmas everyone!

 

*Ha!  It’s looking to be the warmest December on record, and at times has felt more like early summer than mid-winter.

**I’m aware that there are other Kingdom-level classifications out there which could be used, but the Six Kingdom approach is a good starting point.

***Closer to home, colleagues in the office adjacent to mine have adorned their large weeping fig (Ficus benjamina) with home-made Christmas decorations.  Looks good.

7 Comments

Filed under Biodiversity, Biodiversity and culture, Birds, Climate change, Ecosystem services, Honey bees, Mammals, University of Northampton

BBC Wildlife magazine for October features Northampton harvest mice research

BBC WIldlife Magazine

The October issue of BBC Wildlife has a feature on the research being done by Emily Howard-Williams into the ecology and conservation of one of the UK’s most charismatic mammals, the harvest mouse. Emily is a Lecturer in Countryside Management at Moulton College and a PhD student at the University of Northampton, supervised by my colleagues Dr James Littlemore (at Moulton) and Dr Duncan McCollin (at Northampton).

Well done to Emily!  You can find out more about her research in this press release.

Leave a comment

Filed under Biodiversity, Mammals, University of Northampton