Tag Archives: Pollinators

Protecting British Pollinators event TOMORROW – 25th March

I meant to post about this earlier but it’s been a really busy few weeks, so apologies if this is late in the day for any of you. Tomorrow morning there’s a webinar being run by the Public Policy Exchange entitled: “Protecting British Pollinators”. There’s an interesting set of speakers and I’ve been asked to provide the opening introduction and to chair the event.

Here’s the link for more details and booking information:

https://www.publicpolicyexchange.co.uk/event.php?eventUID=LC25-PPE

It should be a good meeting, hope to see some of you there.

Pollinators are allies in the fight against climate change: a new commentary just published in New Scientist

Over the past few months I’ve been thinking a lot about the relationship between the “Climate Emergency” (CE) and the “Ecological Emergency” (EE), and how they overlap considerably in terms of causes and solutions, but that the priorities of the CE often trump those of the EE. One of the outcomes of this has been a commentary that’s been published in New Scientist this week. It’s free to access – here’s the link:

https://www.newscientist.com/article/mg24933260-100-pollinators-are-our-secret-weapon-in-the-fight-against-global-warming/

It’s extracted from a much longer article that discusses the role of pollinators in relation to climate change. Hopefully that will be published in the not too distant future.

The other thing that’s happened this week is that, in my role as Visiting Professor of Biodiversity at the University of Northampton, I was asked to take part in a webinar that’s one of a series being produced in support of the Levelling Up Goals. The LUGs, modelled on the UN’s Sustainable Development Goals (SDGs) have cross-party support in Parliament and aim to bring economic prosperity to those parts of the country that have lagged behind in recent decades. The “Green Economy” is seen as central to this.

The webinar was recorded and you can view it here: https://www.fit-for-purpose.org/engage/how-to-level-up-harness-the-energy-transition

It was interesting and I learned quite a bit, for example about how the government is investing the state pension pot in sustainable energy projects. The format of the webinar, however, with the chair asking individuals a question and each of us responding, was a little frustrating as there was no real opportunity to counter statements being made, particularly by the MP for Hexham.

Yesterday Karin and I had out first COVID-19 vaccination; today we both feel a little under the weather, but it will pass. It’s certainly better than the alternative!

Finally, a physical copy of my book!

Yesterday I was delighted to finally receive an advance copy of my book Pollinators & Pollination: Nature and Society! It’s been over three years in the writing and production, much longer than I had anticipated. But, as I describe in its pages, the book is the culmination of >50 years of experience, study and research. So perhaps three years isn’t so bad…

If you’re interested in buying a copy you can order it direct from Pelagic Publishing and from most of the large online booksellers. Let me know what you think.

SCAPE 2020 by the numbers

Last Friday to Sunday I hosted the annual Scandinavian Association for Pollination Ecology (SCAPE) conference virtually. This is my first opportunity to report back as I took some time off and then tried to catch up with other tasks.

Running any scientific conference is hard work, and virtual ones are no exception! On Monday I was exhausted after a marathon long weekend of three 10-hour days in front of a computer chairing sessions, queuing up speakers and their talks, and generally making sure things ran as smoothly as possible. Of course before that there were literally weeks of preparation, and since then I have been doing follow up work of responding to emails, sending out certificates and receipts, etc.

It’s been quite a job and I couldn’t have done it with the help of my wife Karin (especially for the loan of her office space in the garden) and also Yannick Klomberg who was working on the website, dealing with the posters, etc., all on top of having a week old baby and his partner to look after! In addition I’m grateful to Paul Egan who ran the SCAPE Twitter account, and the session Chairs, keynote speakers, and participants who contributed to a really amazing conference. Our technical support crew from the University of Northampton were great too.

It was the largest SCAPE meeting so far held, no doubt because it was the first to be carried out virtually, with 352 participants from 41 countries listening to and chatting about 92 talks and viewing 39 posters. We also ran several well-attended evening discussion and poster sessions.

Long-standing SCAPEr Marcos Mendez kept a log of the number of participants in each of the sessions and I’ve graphed the data below, showing the broad themes of each group of sessions:

It’s pleasing to see that attendance was reasonably consistent over the course of the long weekend and that there was interest across the full spectrum of themes. The one downward blip was in session 5, which I can only surmise was due to it being the final session on Friday between 17:25 and 18:25.

As is traditional at SCAPE we announced the host of next year’s meeting at the very end. I’m delighted to announce that SCAPE 2021, the 35th annual meeting, will be held for the first time in Poland, where Marcin Zych will be the host. “Wider Scandinavia” just got wider….

Cockroaches as pollinators: a new example just published

When you think of the word “pollinator” what comes to mind? For most people it will be bees, particularly the western honeybee (Apis mellifera). Some might also think of hoverflies, butterflies, moths, bats, hummingbirds…..but cockroaches?! The first published example that I know of which demonstrated that the flowers of a plant are specialised for cockroach pollination is from the mid-1990s. Since then only a handful of well documented cases have come to light, but there are undoubtedly more out there waiting to be discovered, particularly in the wet tropics. Most of the c. 4,600 species of cockroaches are nocturnal, and cockroach-pollinated flowers tend to open at night, which is one reason why they are under documented.

In a new study, published this week in the American Journal of Botany, a team of Chinese, German and British biologists has shown that a species of Apocynaceae from China is the first known example of cockroach pollination in that large family. Here’s the reference with a link to the study; if anyone wants a copy please email me:

Xiong, W., Ollerton, J., Liede-Schumann, S., Zhao, W., Jiang, Q., Sun, H. Liao, W. & You, W. (2020) Specialized cockroach pollination in the rare and endangered plant Vincetoxicum hainanense (Apocynaceae, Asclepiadoideae) in China. American Journal of Botany (in press)

The abstract for the paper follows:

Premise

Species of Apocynaceae are pollinated by a diverse assemblage of animals. Here we report the first record of specialized cockroach pollination in the family, involving an endangered climbing vine species, Vincetoxicum hainanense in China. Experiments were designed to provide direct proof of cockroach pollination and compare the effectiveness of other flower visitors.

Methods

We investigated the reproductive biology, pollination ecology, pollinaria removal, pollinia insertion, and fruit set following single visits by the most common insects. In addition, we reviewed reports of cockroaches as pollinators of other plants and analyzed the known pollination systems in Vincetoxicum in a phylogenetic context.

Results

The small, pale green flowers of V. hainanense opened during the night. The flowers were not autogamous, but were self‐compatible. Flower visitors included beetles, flies, ants and bush crickets, but the most effective pollinator was the cockroach Blattella bisignata, the only visitor that carried pollen between plants. Less frequent and effective pollinators are ants and Carabidae. Plants in this genus are predominantly pollinated by flies, moths and wasps.

Conclusions

Globally, only 11 plant species are known to be cockroach‐pollinated. Because their range of floral features encompass similarities and differences, defining a “cockroach pollination syndrome” is difficult. One commonality is that flowers are often visited by insects other than cockroaches, such as beetles, that vary in their significance as pollinators. Cockroach pollination is undoubtedly more widespread than previously thought and requires further attention.

Just published: An empirical attack tolerance test alters the structure and species richness of plant–pollinator networks

The latest paper from Paolo Biella‘s PhD work, on which I collaborated and that I’ve discussed before on the blog, has just been published in the journal Functional Ecology. It’s entitled “An empirical attack tolerance test alters the structure and species richness of plant–pollinator networks“. The paper presents more of Paolo’s work showing how the experimental removal of the floral resources provided by the more generalised plants in a community can significantly (and negatively) affect the patterns of interaction between flowers and pollinators that we observe. It’s another piece of evidence that demonstrates how important it is to not neglect the common plants that attract a lot of flower visitors when considering how to manage a habitat.

If anyone has trouble accessing the PDF, drop me a line and I will send it to you.

Here’s the reference:

Biella, P., Akter, A., Ollerton, J., Nielsen, A. & Klecka, J. (2020) An empirical attack tolerance test alters the structure and species richness of plant-pollinator networks. Functional Ecology DOI: 10.1111/1365-2435.13642

Here’s the abstract:

Ecological network theory hypothesizes that the structuring of species interactions can convey stability to the system. Investigating how these structures react to species loss is fundamental for understanding network disassembly or their robustness. However, this topic has mainly been studied in‐silico so far.

Here, in an experimental manipulation, we sequentially removed four generalist plants from real plant–pollinator networks. We explored the effects on, and drivers of, species and interaction disappearance, network structure and interaction rewiring. First, we compared both the local extinctions of species and interactions and the observed network indices with those expected from three co‐extinction models. Second, we investigated the trends in network indices and rewiring rate after plant removal and the pollinator tendency at establishing novel links in relation to their proportional visitation to the removed plants. Furthermore, we explored the underlying drivers of network assembly with probability matrices based on ecological traits.

Our results indicate that the cumulative local extinctions of species and interactions increased faster with generalist plant loss than what was expected by co‐extinction models, which predicted the survival or disappearance of many species incorrectly, and the observed network indices were lowly correlated to those predicted by co‐extinction models. Furthermore, the real networks reacted in complex ways to plant removal. First, network nestedness decreased and modularity increased. Second, although species abundance was a main assembly rule, opportunistic random interactions and structural unpredictability emerged as plants were removed. Both these reactions could indicate network instability and fragility. Other results showed network reorganization, as rewiring rate was high and asymmetries between network levels emerged as plants increased their centrality. Moreover, the generalist pollinators that had frequently visited both the plants targeted of removal and the non‐target plants tended to establish novel links more than who either had only visited the removal plants or avoided to do so.

With the experimental manipulation of real networks, our study shows that despite their reorganizational ability, plant–pollinator networks changed towards a more fragile state when generalist plants are lost.

The other pollinators: some recent videos that don’t focus on bees

The review of the biodiversity of pollinators that I published in 2017 estimated that on average about 18% of animal-pollinated plants within natural communities are specialised on bees. Bees also contribute to the reproduction of many of the plants that have generalist pollination systems, which account for perhaps 50% of plant species on average. But that stills leaves a significant fraction (maybe one third) that are specialised on the “other” pollinators, including flies, beetles, birds, bats, and so forth. There is growing awareness of how important these pollinators are for wild plant and crop pollination, but bees still hog most of the pollinator-related media.

In the last couple of weeks I’ve been sent links to videos that focus on these other pollinators so I thought I’d compile a list that show us something of the true diversity of animals that act as pollen vectors. Please add your own suggestions in the comments:

Elephant shrews, lizards, cockroaches*, crustaceans, and biting midges are covered in this SciShow video (HT Steve Hawkins)

Opossum pollination of a Brazilian plant is featured in this video (HT Felipe Amorim)

Here’s a recorded webinar on bird pollination by Dan Scheiman from Audubon Arkansas

A few videos on bat pollination by Jim Wolfe can be found here and here and here, and this is a short one that’s a supplement to a recent Journal of Applied Ecology paper on cactus pollination by Constance J. Tremlett et al.

The fascinating ecology of skunk cabbage (Symplocarpus foetidus), including fly and possibly beetle pollination, is the topic of this video.

Fly pollination is also highlighted in this short piece by the Natural History Museum, and this one deals with drone flies as managed pollinators for agriculture in New Zealand.

Enjoy!

*Watch out for my report on a newly discovered cockroach-pollinated plant….hopefully coming later this year…..

Landscapes for pollinators: please take the survey!

BB on margin

One of the research projects and collaborations that I’m involved with is a BBSRC-funded project entitled “Modelling landscapes for resilient pollination services in the UK” with colleagues from the University of Reading, the University of Huddersfield, and the Natural Capital Solutions consultancy.  As part of that project we are surveying opinions on what people in the UK value as landscapes and how these landscapes contribute to supporting biodiversity.

If you are based in the UK and are interested in taking part in this short survey, please read the following text and click on the link to take the survey: 

Bees and other insect pollinators are major contributors to UK agriculture. Despite their importance for crop production, pollinator populations are threatened by many modern land management and agricultural practices. This raises questions about how secure this service may be to future changes: will we have enough pollinators where we need them? Will populations be able to withstand changes to the way we manage land? What might be the costs to us, both financially and socially, if we get it wrong?

Our research aims to address this knowledge gap. Our team of ecologist, economists and social scientists are working together to model the ecological, economic and ‘human’ costs of different land management methods.

As part of this we have designed a short online survey to capture the ways that people value and use the countryside, what features they prefer and why.

The survey takes less than 10 minutes and asks you to rate a series of images and say what you think about the landscapes that are illustrated.  It can be found here:

http://hud.ac/landscapes

For more information about the project visit:

http://www.reading.ac.uk/caer/RP/RP_index.html

Impact of extreme events on pollinators: download it for free

SHOCKs image

In my last post I highlighted a couple of recent papers on climate change and extreme events, and how they impact pollinators.  The Erenler et al. (2020) mini-review paper that I mentioned has now been published and is available for free download for the next 50 days.  Follow the hot link here:

Erenler, H.E., Gillman, M.P. & Ollerton, J. (2020) Impact of extreme events on pollinator assemblages.  Current Opinion in Insect Science 38: 34-39

This review is one of several from a themed issue of Current Opinion in Insect Science devoted to Ecology.  The issue is edited by Tom Ings from Anglia Ruskin University and Sarah Arnold from University of Greenwich.

 

Pollinators, climate change, and extreme events: two recent publications

SHOCKs image

Well, we’re back in the UK now and have just about got over the jet lag.  I’ve returned to teaching, admin, and meetings, and both Karin and I are trying to find time to finish our books.  But the persistent backdrop to our stay in Australia – the bushfires and the role of climate change, and the ensuing tensions between scientific evidence and politics – is still fresh in our minds.  It’s timely, then, to highlight two new papers that focus on extreme events, climate change and pollinators.  The first is one of my own, led by Dr Hilary Erenler who carried out her PhD research in my group.  It’s an invited mini-review in the journal Current Opinion in Insect Science entitled “Impact of extreme events on pollinator assemblages” (Erenler et al. 2020).  The review is available as a pre-print on the journal’s website; we’ve not yet even seen the proofs, though the final version should not be too different.  If you want a copy, just ask.

In this essay we focus on what we term SHOCKS: events that provide a Sudden, High-magnitude Opportunity for a Catastrophic ‘Kick’ to the environment that can negatively affect pollinator assemblages in many different ways.  Such events can be natural, human-mediated or human-enhanced, and occur suddenly, at a high-magnitude and with possibly catastrophic outcomes for those pollinators. There are many examples of such SHOCKs, as we illustrate in the figure above which comes from the paper.  However one of our main conclusions is just how little we understand about the outcomes of such events on pollinators.  Ideally we need before, during and after event monitoring to assess how pollinators have been affected and may respond.  But SHOCKs are, by their very nature, infrequent and unpredictable, and often we don’t have the baseline data with which to compare to post-event data.  I know from conversations with Australian pollination ecologists that some have had their field sites burned and they are going to use this as an opportunity to assess how the fires have impacted pollinators.  Field experiments such as the one by Biella et al. (2019) that I discussed last year, in which flowers were removed from a plant community, may also give us some insights into the response of plant-pollinator networks to sudden SHOCKs.  But we need more research focus on this topic, especially consideration of how the impacts of SHOCKs can be reduced and mitigated.

One set of emerging human-enhanced SHOCKs highlighted by Erenler et al. (2020) is extreme weather events that are being exacerbated (in scale or frequency) by anthropogenic climate change.  We cite several papers and reviews that have considered this, but there’s still few empirical studies that have actually looked at how weather SHOCKs might be impacting pollinators.  It’s therefore timely that this week’s Science includes a very impressive study of how climate change has affected populations of bumblebees (Bombus spp.) in Europe and North America (Soroye et al. 2020).

The title of the paper rather gives away its findings:  “Climate change contributes to widespread declines among bumble bees across continents“.  This study shows that, for the 66 species of Bombus studied, there had been a decline in species diversity in 100 km x 100 km quadrats of, on average, 46% in North America and 17% in Europe.  This loss of diversity has occurred in the period 2000–2014, relative to a baseline of 1901–1974.  Using some sophisticated analyses they show that climate change has been the main driver of these losses, and has been more important than factors such as changes in land use, pesticides, etc.  Which is not to discount those other contributors to pollinator loss: they can interact with climate change and are all part of the assault that we are imposing on the environment.

The most significant finding of the Soroye et al. (2020) study, and the reason why I’m discussing Erenler et al. (2020) in the same post, is that it’s extreme heat which seems to be the driving factor in determining Bombus declines.  Bumblebees are large, hairy insects because they are adapted to cooler conditions: they are not, by and large, tropical insects, except in mountainous areas.  Not surprisingly, then, it is the number of days of temperatures higher than those historically encountered by particular bee species that is the main driver of their loss from a region.  In relation to the figure above, this is the result of human-enhanced SHOCKs, and for heat-sensitive species like bumblebees, they are occurring more often than we had imagined when we wrote our review.  I fear that the coming years will see more examples of this as the effects of anthropogenic climate change continue to play out and our world experiences more extremes of weather events that are hotter, wetter, colder, drier, windier, and more combustible than we have previously known.

References

Biella P., Akter A., Ollerton J., Tarrant S., Janeček Š., Jersáková J. & Klecka J. (2019) Experimental loss of generalist plants reveals alterations in plant-pollinator interactions and a constrained flexibility of foraging. Scientific Reports 9: 1-13

Erenler, H.E., Gillman, M.P. & Ollerton, J. (2020) Impact of extreme events on pollinator assemblages.  Current Opinion in Insect Science (in press)

Soroye, P., Newbold, T. & Kerr, J. (2020) Climate change contributes to widespread declines among bumble bees across continents. Science 367: 685-688 [see also the commentary by Bridle and van Rensburg pp. 626-627 of the same issue]