Last week I returned from a 14 day visit to China to colleagues at the Kunming Institute of Botany in Yunnan, part of a three-year commitment to working there that I documented on the blog last year, starting here. Some of my recent trip involved a long weekend in the city of Nantong, just north of Shanghai, where I was an invited speaker at the International Pollinator Insect Biology and Pollination Symposium. During a full day of talks from researchers and practitioners, via the excellent simultaneous interpretation service provided by the organisers, we learned about recent developments in the world of Chinese honey bees and wild pollinators. There were also international guest speakers from Australia, Argentina, and the UK, in person and online.
First of all, a number of speakers commented on the growing realisation in China that the value of crop pollination services by honey bees (both the native Asian Apis cerana and the European A. mellifera) far outweighs the value of the hive products such as honey, wax and royal jelly – see this from the 2021 study by Shibonage K Mashilingi and colleagues:
The total economic value of pollination amounted to US$ 106.08 billion in 2010, representing 19.12% of the total production value of Chinese agriculture
In comparison, the global honey market was valued at just US$ 9.01 billion in 2022. That such an understanding of the much greater economic value of pollinators to agriculture was relatively slow in coming is perhaps not surprising – it’s easier to weigh a physical product than it is to assess the contribution of bees and other insects to an apple harvest, for instance. But this awareness is a crucial step towards understanding the many reasons why pollinators need protection.
Which leads me to my next point: there was considerable political interest in the conference and in the topic more broadly. The meeting opened with almost an hour of introductory remarks by high-ranking Chinese officials, including the Vice Mayor of the regional government, the Vice President of the Chinese Academy of Agricultural Sciences, and the Secretary General of the Ministry of Agriculture and Rural Affairs of China. All of them commented on the importance of pollination to both crops and wild plants, and the need to reduce the amount pesticides being used in Chinese agriculture. I can’t recall ever being in a pollination symposium in any other country where there was such a political presence. I think that it says a lot about the Chinese willingness to translate science and technology into government policy and actions.
At the end of the opening session I had the chance to talk briefly with Liu Jian, former Vice Minister of Agriculture and Rural Affairs of China. Via an interpreter we agreed on the importance of pesticide reduction for protecting pollinators, a theme he had emphasised strongly in his talk, and I presented him with a copy of my book Pollinators & Pollination: Nature and Society:
Following the opening addresses there was a talk by the President of the Apicultural Science Association of China, Prof. Peng Wenjun, who gave us “An overview of the development of China’s bee pollination industry”. He described pollinators as the “invisible pillar” of agriculture, which is a wonderful phrase, and set out a strategy for greater integration of government policies, science, and technological innovation in order to support both managed and wild pollinators.
The first set of talks ended about 6pm, then it was back to the hotel for a quick dinner, before returning to the venue for a set of 15 shorter, but no less excellent, talks by postgraduate and postdoctoral researchers. This over-ran slightly and finally drew to a close at about 10pm, signalling the end of a very long, but very stimulating, day.
The following morning we were up early for a tour of some local agricultural facilities, including a high-tech glasshouse demonstration project and a loquat orchard that included trees which are thought to be around 300 years old. The thing that links these two contrasting agricultural systems is the requirement for managed pollinators to produce a crop: bumblebees (Bombus spp.) in the case of glasshouse tomatoes and the Asian honey bee (Apis cerana) for the winter-flowering loquat. Here are some photographs from that trip:
My sincere thanks to the organisers of the symposium for the invitation to speak and to my colleagues Zong-Xin Ren, Scarlett Howard, Yuansheng Fu, and Carlos Matallana-Puerto for their companionship on the trip. I’m grateful also to our personal translator-guides Yang and Gao who surprised us at the airport and made us feel so welcome:
Pollinators such as wild bees, butterflies, and hoverflies are in trouble worldwide. A major new study, published in Science and led by Gabriella Bishop and other scientists at Wageningen University & Research, shows that the oft-quoted figure of 10% semi-natural habitat in farmland landscapes is far too little to safeguard pollinators. Instead, the evidence points to a need for somewhere between 16% and 37% habitat cover, depending on the type of pollinator, if we are serious about halting declines. Suitable habitats include hedgerows, patches of woodland, species-rich grasslands, and flowering margins, and as a general rule, hoverflies need less of it whilst bumblebees and butterflies require more.
I was fortunate to play a part in this global assessment, contributing an unpublished dataset collected with my former PhD student, Sam Tarrant, who studied plant-pollinator interactions on restored landfill and established grassland sites. Seeing those data joined with dozens of other studies from around the world underlines something we have known for years: no single dataset, however carefully gathered, can give us the whole picture. To really understand what is happening to biodiversity—and to design conservation solutions that work—we need these kinds of global, mega-author syntheses that draw together evidence from many landscapes, taxa, and approaches.
The message from this analysis is stark but hopeful. More habitat means more pollinators, across all groups. Richer habitats with abundant flowers give an additional boost, but the overriding priority must be to increase the sheer area of natural habitat in farmed landscapes. Small-scale fixes like wildflower strips offer short-term benefits, but without enough space they can’t deliver recovery at scale. Long-term, secure habitat creation—on the order of decades, not seasons—is what pollinators, farmers, and ecosystems need.
Although the policy debate in Europe provided the backdrop for this study, the lessons (and the data) are global. Wherever agriculture dominates, the health of pollinator populations—and by extension our food security and biodiversity—depends on our willingness to give these insects the space and quality of habitat they require.
Looking ahead, we need to think bigger and work together. That means more international collaborations, more sharing of data, and more commitment to long-term solutions that transcend borders. The image at the start of this post is from my trip back to China in July this year. I deliberately chose it because, as you’ll see from the map below which is taken from the paper, there was no suitable data available for the study from that country. Or from Africa. Or Australasia. Or from most of tropical South America. That shows that as pollination ecologists we need to coordinate more in advance on these types of syntheses, and maximise the value of the kinds of data that we collect. The main take away from this study, however, is that if we want to reverse the declines in biodiversity, scientists, policymakers, businesses, farmers, and citizens all have a role to play. Pollinators remind us that nature is interconnected and global—our conservation efforts must be, too.
Here’s the full reference with a link to the study:
Biodiversity in human-dominated landscapes is declining, but evidence-based conservation targets to guide international policies for such landscapes are lacking. We present a framework for informing habitat conservation policies based on the enhancement of habitat quantity and quality and define thresholds of habitat quantity at which it becomes effective to also prioritize habitat quality. We applied this framework to insect pollinators, an important part 5 of agroecosystem biodiversity, by synthesizing 59 studies from 19 countries. Given low habitat quality, hoverflies had the lowest threshold at 6% semi-natural habitat cover, followed by solitary bees (16%), bumble bees (18%), and butterflies (37%). These figures represent minimum habitat thresholds in agricultural landscapes, but when habitat quantity is restricted, marked increases in quality are required to reach similar outcomes.
If you’ve read my book Birds & Flowers: An Intimate 50 Million Year Relationship, you’ll know that I spend a few pages discussing the long-standing paradigm of how interactions between plants and their pollinators evolve and result in the formation of new plant species. This is referred to as the Stebbins (or Grant-Stebbins) Most Effective Pollinator Principle (MEPP). The MEPP is fairly straightforward and intuitive: flowers evolve their colour, shape, scent, rewards, and so forth as adaptations to the type of flower visitor that successfully moves the most pollen between flowers.
However, the MEPP is not the only Principle in town – there’s also Aigner’s Least Effective Pollinator Principle (LEPP) which is not so intuitive. In the LEPP, flowers can adapt to pollinators that are less successful at pollination, as long as those adaptations do no interfere with the pollination services provided by other flower visitors.
As I note in Birds & Flowers, we don’t know which of these Principles is more frequent in nature, because the LEPP has been much less intensively studied than the MEPP. That’s in part because it’s less well known, but also because the field work and experimental procedures required to test the LEPP are much more challenging.
Kathleen and Bruce discuss not just the MEPP v the LEPP, but also other ways in which flowers can evolve, framed around the idea of floral evolution as movement across an “adaptive landscape,” where plants are not shaped only by one pollinator but by the need to maximise overall reproductive success. This perspective allows us to explore how flowers evolve when influenced by multiple pollinators, how transitions between floral forms take place, and how speciation occurs through a combination of factors beyond pollination alone. It emphasises that pollinators are important drivers of floral change, but speciation is more likely when divergence happens across several aspects of a plant’s ecology, not just through its flowers.
It’s a great review and well worth your time reading in detail. Perhaps my favourite line in the paper comes from the abstract: “The Grant–Stebbins model, while inspiring decades of empirical studies, is a caricature of pollinator-driven speciation and explains only a limited range of adaptive outcomes.” This is something that many of us have been arguing for years: the natural world is extremely complex, so we should not expect these ecologically critical interactions between flowers and their pollinators to have simple origins or ecologies.
The event takes place in the Wilkinson Room, St. John’s Church, Hills Road. Doors open at 7pm and the talk begins at 7.30pm. There’s a £2.00 charge for non-members – more details can be found by following this link.
Bees are among the most important pollinators in the natural world, quietly sustaining ecosystems and food production. While honeybees often steal the spotlight, a vast number of solitary and primitively eusocial bees play equally vital roles. But across both urban and natural landscapes, many of these species are facing worrying declines.
As cities expand, they’re increasingly being seen not just as threats to biodiversity, but as potential refuges for pollinators. Yet urban environments are very different from natural ones. The heat generated by buildings and concrete – known as the urban heat island effect – and the way green spaces are managed (often with little consideration for flowering plants) could be affecting bees in ways we’re only beginning to understand.
As part of a recent study led by my former PhD student Muzafar Sirohi, we explored how urban conditions might be influencing the timing of bee emergence and the sex ratios of different species. This work formed part of Muzafar’s PhD research, and I was pleased to be part of the team that supported and collaborated on the project.
We found that several solitary bee species were producing females before males – a reversal of the more typical pattern known as ‘protandry’, where males emerge first. Most bees in the families Apidae and Megachilidae did follow the usual male-first pattern, but there were some interesting exceptions, including Nomada marshamella and Nomada fabriciana. Soil-nesting species also showed a lot of variation in emergence timing, likely influenced by microclimatic differences in urban soils.
When we looked at overall sex ratios, patterns varied across bee families. In Halictidae, females were more common, whereas Apidae and Megachilidae were skewed towards males. Interestingly, the Colletidae family showed no strong bias either way. However, in five species from the Andrenidae and Halictidae families, we saw a clear difference between urban and natural environments: urban populations had a higher proportion of males.
This could suggest that urban habitats – especially those with limited floral resources due to mowing, paving, or the removal of wild plants – may not be supporting as many female bees. Since females are the ones responsible for nest-building and potentially pollination, as they visit more flowers, this imbalance could have long-term effects on bee populations and the pollination services they provide.
Our study adds to the growing body of evidence that urban environments can support pollinators – but only if managed thoughtfully. Cities need more than just green space: they need flowering plants, nesting habitats, and careful planning that recognises the delicate balance of bee ecology. With the right actions, we can make urban areas part of the solution to pollinator decline.
Solitary and primitively eusocial bees are essential pollinators of plants. However, recent observations indicate a decline in their populations in both urban and natural environments. Urban areas are increasingly recognized as potential habitats for bee conservation. Nonetheless, these urban habitats can influence the taxonomic and functional diversity of bee populations. Therefore, we hypothesize that the distinctive warmer climate of urban areas – resulting from the urban heat island effect – along with the potential scarcity of floral resources, contributes to shifts in emergence patterns and the sex ratio of solitary and primitively eusocial bees. We found that many solitary bee species produced females before males. Additionally, most species within the Apidae family were recorded as protandrous, with the exceptions of Nomada marshamella and Nomada fabriciana. All species of Megachilidae were found to be protandrous. We also observed significant variation in the emergence patterns of soil-nesting species. Notably, we did not find any relationship between sociality and nesting preferences in relation to sex-biased emergence. The overall sex ratio varied among different bee species and families. In Halictidae family, sex ratios were biased towards females, while the Apidae and Megachilidae families exhibited a skewed ratio towards males. The sex ratio in the Colletidae family did not show any significant difference. However, among the Andrenidae and Halictidae families, we identified five species with significantly different sex ratios between urban and nature areas, with a higher proportion of males observed in urban sites. This suggests that these species may have been affected by limited food resources, potentially due to urban management practices such as the removal of floral resources. This could lead to increased competition for resources among the species.
When we think of pollination, we often picture bees buzzing around flowers or butterflies flitting from bloom to bloom. This relationship between plants and pollinators is one of the most well-known interactions in nature. But insect pollination didn’t begin with the colorful flowers we see today. In fact, pollinators were at work millions of years before flowering plants (angiosperms) even existed. In a new review led by Spanish researchers David Peris and Ricardo Pérez-de la Fuente, to which I added a modern ecological perspective, we explored this topic and why it’s relevant to our current understanding of plant-pollinator relationships.
Despite centuries of research on pollination, the fossil record of pollinating insects has only gained serious attention in the past few decades. What palaeontologists have uncovered is reshaping our understanding of pollination’s origins. It turns out that insects were pollinating plants long before flowers evolved—playing a crucial role in the reproduction of ancient gymnosperms, the group of seed-producing plants that includes conifers, cycads, and ginkgos.
Most people assume that insect pollination began with flowering plants, but the evidence tells a different story. Fossilised insects with specialised body structures for carrying pollen—such as hairy bodies or mouthparts adapted for nectar-feeding—have been found in deposits dating back hundreds of millions of years. These early pollinators likely visited gymnosperms, helping them reproduce in a world that looked vastly different from today’s landscapes.
Ancient pollination was driven by a diverse range of insects, many of which are now extinct. The fossil record reveals that various insect groups—including beetles, flies, wasps, and even some long-lost relatives of modern lacewings—were already acting as pollinators long before the first flower bloomed. This means that pollination as an ecological process has far deeper evolutionary roots than many realise.
As plants evolved, so did their pollinators. The rise of flowering plants during the Cretaceous period (around 100 million years ago) transformed pollination systems, leading to the incredible diversity of plant-pollinator relationships we see today. Many of the insect groups that once dominated pollination in prehistoric times have since declined or disappeared, replaced by the bees, butterflies, and other familiar pollinators that thrive in modern ecosystems.
Understanding this long history is essential—not just for scientists, but for anyone interested in biodiversity and conservation. When we focus only on present-day pollinators and plants, we miss a crucial part of the story. The fossil record helps us see how pollination has changed over time, which in turn can offer insights into how today’s ecosystems might respond to environmental pressures such as climate change and habitat loss.
Recognising the ancient history of insect pollination isn’t just an academic exercise—it has real-world implications. If we understand how pollination evolved and adapted to past environmental changes, we can better predict how it might shift in the future. Conservation efforts that aim to protect pollinators today can benefit from a long-term perspective, ensuring that we’re not just responding to recent trends but also considering deep-time ecological processes.
So the next time you see a bee visiting a flower, remember—you’re witnessing the latest chapter in a story that began hundreds of millions of years ago. The relationship between plants and pollinators is far older, more complex, and more fascinating than we ever imagined.
Here’s the reference with a link to the paper. It should be open access, but if you have problems obtaining it, send me a message via my Contact page:
Recently the Bumblebee Conservation Trust (BCT) reported that, in 2024, British bumblebees experienced their worst year since the BCT started its monitoring campaign. Overall, the numbers of bees were down by more than one fifth, with one of our commonest species, the Red-tailed Bumblebee (Bombus lapidarius) declining a staggering 74%! The cause seems to be the cold, wet spring of 2024 and we have to hope that this is a blip that will not be repeated in 2025. So far the year has been cold and I didn’t see my first queen bumblebee flying until early March. But the very warm weather over the last few days has encouraged bumblebees out of hibernation and plants to start flowering.
Long-term monitoring of the type that the BCT undertakes with its volunteers, is vital if we are to understand how British pollinators are faring. When I compiled the evidence for the chapter entitled ‘The shifting fates of pollinators’ in my book Pollinators & Pollination: Nature and Society, I tried to give a global overview, but also focused on British records, which are probably the best long-term data that is available on trends in pollinators. This information is compiled by the Joint Nature Conservation Committee (JNCC) as part of its annual UK Biodiversity Indicators reports. Each year it produces an indicator showing trends in bees, hoverflies, and the two combined as an overall pollinator trend*. To quote the JNCC website:
The indicator is based on 394 species (158 species of bee and 236 species of hoverfly), and measures change in the number of 1 kilometre grid squares across the UK in which they were recorded in any given year: this is referred to as the ‘occupancy index’.
The bee data comes from the Bees, Wasps and Ants Recording Society (BWARS) and the graph of bee trends that I used in that chapter of my book assessed records up until 2017. It looked like this:
As you can see, the index fluctuated a bit but was on average fairly stable up until 2005, after which there was a sharp decline, then an uptick from about 2014, though still low compared to the 1980 baseline. The overall impression is that bees had a tough time from the early 2000s onward, but things seem to be improving.
This looks a bit different – the fluctuations are more pronounced – but overall the trend is similar, though the drop after 2015 is worrying. The impression is that there’s been big (cyclical?) fluctuations in the bee index over time, but its generally always below the 1980 baseline.
Updating the story to 2022 (the most recent available) shows a very different picture:
The impression it gives is that there’s been some modest fluctuations in the bee index, but then from about 2013 onward, the index has massively improved and now wild bees are doing better than ever!
What’s happening here? Why are these three graphs – published over a period of about five years – giving such different impressions of what’s happening to wild bees in Britain? As far as I can tell there’s two main reasons for the changes. The first is that the number of bee species included in the index increased from 137 to 148 to 158. Adding species for which there was previously no or little data is clearly going to have an effect.
The second reason, perhaps more fundamental, is that the method used for calculating the index has been refined, as explained in the technical annex to the study. That’s important because the data underlying the bee index was never collected in a standardised way for the purposes of assessing species’ trends. For this reason the UK Pollinator Monitoring Scheme (PoMS) was developed and it’s interesting to see that the data in the latest PoMS report shows some stability in wild bee abundance from 2017 to 2022:
So the latest data suggests that, for once, there’s some good news in the world of British wildlife. Does this mean that we should be complacent about the state of our wild bees? Absolutely not! As always, the devil’s in the details. The BCT report that I cited at the start of this post provides one level of (worrying) detail. But another is provided by the JNCC’s own statistics. As well as showing the overall trend in the bee index, the analysis digs into what is happening for individual species and provides a helpful summary figure like this:
Clearly many species are doing well, or at least have not changed since the 1980s. But more than one quarter of British wild bees are showing a weak or strong decline over the long term. That’s a clear signal that we need to keep on with our efforts to support wildlife and enhance our strategies to improve the state of nature in Britain.
As always, feel free to comment on the post or get in touch via my Contact page.
My sincere thanks to all of the volunteer naturalists who collect the data used by JNCC and PoMS – the task of assessing trends in wildlife would be impossible without your commitment!
————————————————————————————————–
*Why JNCC does not include butterflies – which are assessed separately – in this overall trend is unclear to me, as we know that they can be important pollinators for some plants – see my blog post: ‘Butterflies, bumblebees and hoverflies can be equally effective pollinators of some plants says a new study‘.
**The data in the JNCC report is always a couple of years behind the publication date.
This element of Muzafar’s work explored how solitary and primitively eusocial bees (those that live alone or in simple social groups) respond to different aspects of city landscapes. He examined local habitat factors such as floral diversity, bare soil availability, and sunlight exposure, alongside broader urban features like green spaces, roads, and paved areas.
The findings highlight that small-scale habitat conditions—especially the variety of flowering plants and access to sunlight—had a greater influence on bee diversity and abundance than overall habitat size. While larger landscape features, such as urban green spaces, played a role at a broader scale, even small patches of wild vegetation and roadsides were found to be important for bees.
These results challenge the idea that bees need large, uninterrupted green spaces to thrive. Instead, even fragmented urban habitats, when managed thoughtfully, can support pollinators. By planting diverse flowers, preserving patches of wild vegetation, and maintaining sunlit areas, cities can become havens for these essential insects.
Simple changes—like creating wildflower-rich roadside verges or maintaining natural pockets of greenery—can make a significant difference. As urbanisation continues, ensuring that bees have the resources they need to survive will be key to supporting biodiversity and maintaining the critical pollination services they provide.
Here’s the reference with a link to the published study; if you are not able to access it, send me a request for a PDF via my Contact page:
Solitary and primitively eusocial bees are important pollinators of plants, which are experiencing a global decline. Urbanisation is one of the contributing factors to this decline. It is crucial to understand the complex community dynamics of solitary and primitively eusocial bees in urban areas as urbanization grows globally. For bee communities, the local habitat as well as the surrounding urban landscape play an important role. The study considered four local habitat variables: habitat size, floral species richness, bare soil and shade. Moreover, five common land cover types (green space, buildings, roads, car parks, and paved surfaces) were assessed at multiple spatial scales from 40 m to 200 m from the centre of the sites with 20 m steps, analysing their potential impacts on the bee community. The study found a greater effect of local habitat compared to landscape variables at a smaller spatial scale. However, landscapes affected the bee community at larger spatial scales. The size of the habitat did not affect the bee community in urban areas. However, habitats with a higher number of plant species and exposed to sunlight attracted relatively more bees. This study suggests that urban areas are capable of conserving solitary and primitively eusocial bees. Although green space is important for the dispersal of species at larger landscape scales, small patches of wild, leftover vegetation and roadsides are equally important for bees. The management of bee friendly open vegetation with wildflowers would be beneficial for the successful conservation of solitary and primitively eusocial bees in urban areas.